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ABSTRACT

Finite element heat transfer models of ferromagnetic thermoseeds and catheters

were developed for computerized pretreatment planning of ferromagnetic hyperthermia.

These models were implemented into a general purpose finite element program to solve

the bioheat transfer equation. In simulations with a 4x4 array of thermoseeds in a two-

dimensional tissue model, the heat transfer model predicted that fractions of tumor greater

than 43"C were between 8 and 40% lower when thermoseed temperature depended on

power versus models which assumed a constant thermoseed temperature. The modeling

of catheters was found to be necessary since the fractions of tumor greater than 420C in

simulations using thermoseed and catheter models were between 1 and 45.3% lower than

in simulations with bare thermoseeds.

An objective function was developed to aid in selecting optimal thermoseed

temperatures and seed spacings a priori. The objective function has a physiological basis

and considers increased cell killing at temperatures above 42 to 430 C (= Tin, thera.).

There is a penalty term in the objective function to account for heating of normal tissues

above Trin, thera.. The objective function is independent of the size and shape of normal

tissues included in the model. There is a scalar weighting factor y in the objective

function that has treatment implications. In a simple tissue model, it was shown that the

uncertainties associated with cell survival above Tmin, thera. had a small effect on the

fraction of tumor killed and on the objective function. It was also shown that the

objective function identifies optimal thermoseed spacings that maximize the fraction of

tumor killed. In a model of a tumor in the human prostate, it was shown that if a

compromise was sought between maximizing the minimum tumor temperature

(= Train, tumor) and minimizing the maximum temperature in normal tissues
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(= Ta,, o the objective function was an effective method to optimize the treatment

plan. Additionally, it was shown in simulations that fractions of tumor above

temperatures between 42 and 50 0C were between 0 and 60% higher with a temperature-

dependent versus a constant blood flow model.
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Nomenclature

A compilation of all the symbols used in this study is provided below.

Dimensions are in terms of mass (M), length (L), time (t), temperature (T), and energy

(E). The location refers to the equation, section or figure in which the symbol is first

used or thoroughly defined.
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bi Intercepts in linear equation approxima-
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b Column perfusion vector

b(e) Element perfusion vector
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Chapter 1

Introduction

This introductory chapter consists of several sections. A brief discussion of cancer

and the four main types of cancer are discussed in Sec. 1.1. The several methods

available today for treating cancer are reviewed in Sec. 1.2. The method of treating

cancer known as hyperthermia, its use alone in treating tumors and in combination with

radiation is presented in Sec. 1.3. The many techniques available for delivering

hyperthermia treatments are discussed in Sec. 1.4. Hyperthermia delivered with

interstitial ferromagnetic thermoseeds is discussed in Sec. 1.5. A review of theoretical

studies that sought to optimize hyperthermia treatments is discussed in Sec. 1.6. The

objective and significance of this study are presented in Sec. 1.7.

1.1 What is Cancer?

Cancer is an abnormal growth of tissue. There are four main types of cancer: (1)

carcinomas, (2) sarcomas, (3) lymphomas and (4) leukemias. Carcinomas are malignant

tissues tfiat develop in the body's lining including the skin, the inside and outside of the

body's organs, the glands, the lungs, and the digestive tract. Approximately 88 out of

100 human cancers are carcinomas. Sarcomas develop in the muscles, bones, fat and

connective tissues of the body. About two cancers in 100 are sarcomas. A third type of

cancer affects cells of the lymphatic system and is called lymphoma. Lymph is the clear



body fluid that carries disease-fighting white blood cells which flows through the body in

tubes and collects in tiny pockets. Cancerous cells can travel throughout the lymph

system, spreading from the origin of the tumor and metastasizing to other locations in the

body. About five or six cancers in 100 are lymphomas. Leukemia is a fourth type of

cancer and most often strikes children. Leukemia is cancer of the bone marrow which is a

sponge-like, red tissue where the body creates red blood cells. Three or four cancers in a

hundred are leukemias.

1.2 Methods of Cancer Treatment

Cancer is treated by one or a combination of several modalities or methods. These

methods include surgical removal, chemotherapy, radiation, immunotherapy,

hyperthernia, and most recently, gene therapy. Clinical treatment of cancer is directed by

medically-trained physicians called oncologists. Surgical oncologists remove tumor

masses from their patients. Medical oncologists administer chemotherapeutic and

immunotherapeutic drugs. Radiation oncologists determine the type and quantity of

radiation to deliver to tumors. The types of radiation include photons, electrons and

neutrons. Radiation can be delivered to tumors with external beams from a linear

accelerator. Another form of radiation therapy is brachytherapy where radiation emanates

from implants that are placed surgically within interstitial and intercavitary catheters.

Hyperthermia is the heating of tissue temperature above normal body temperature and

may be used as an adjunct to radiation therapy and chemotherapy.

1.3 What is Hyperthermia?

Hyperthermia is generally understood today as a form of cancer therapy in which

tissue is heated into a therapeutic temperature range to either directly kill tumor cells



and/or sensitize cancerous tissues to other forms of therapy. Hyperthermia is the

antithesis of the more generally known form of 'thermia', hypothermia, which is the

lowering of body temperature below normal body temperature.

1.3.1 Mechanisms of Cell Lethality

The mechanisms by which heat kills cells are far from understood. It is possible

that various mechanisms and targets are involved (Hall, 1988). The targets include:

Plasma Membrane: The membrane consists of a phospholipid bilayer. The

viscosity of the membrane varies with temperature.

Agents can increase the fluidity of the plasma membrane

and can increase the damage caused by a heat treatment. It

is possible that damage to the plasma membrane may be a

principle cause of cell death.

Proteins: The amount of energy required to kill cells by heat is nearly

equal with that needed to damage proteins and inhibit

protein synthesis. There is evidence that cells in the G-11

phase of the cell cycle die from membrane damage before

reaching the next mitosis.

DNA: Abnormalities in chromosomes are produced at 45 C.

Hyperthermia has a direct cytotoxic effect. Heat can control experimental tumors

without causing much damage to surrounding normal tissues (Crile 1963, Dickson et al.

1977; Marmor et al. 1979; Marmor et al. 1977; Overgaard 1978; Overgaard and

Overgaard 1972; Overgaard and Suit 1979; Suit 1977). The cytotoxicity is enhanced by

lin tissue culture studies, the cyclic changes of the cell growth cycle are divided into speific periods or
phases: the DNA synthesis or S phase; the G-2 phase or gap; the M or mitotic phase; and the G-1 phase.



increased cellular acidity, chronic hypoxia (low 02) and insufficient nutrition (Dewey et

al. 1977b; Freeman et al. 1977; Gerweck et al. 1979; Hahn 1974; Hill and Denekamp

1978; Overgaard 1978; Overgaard 1977; Overgaard 1976; Overgaard and Nielsen 1980;

Suit Gerweck 1979). Furthermore, hyperthermia can alter tumor metabolism into a more

anaerobic state by damaging the local vasculature and therefore reducing the blood flow in

heated tumors (Cavaliere et al. 1967; Overgaard 1977; Song 1978; Storm et al. 1979).

1.3.2 Hyperthermia Alone

It is generally agreed that local hyperthermia by itself has a limited role in cancer

therapy. The data to support this conclusion has been summarized by Overgaard (1982).

The complete response rate (or elimination of the tumor) to heat alone does not exceed

about 10% (Overgaard 1982).

1.3.3 Hyperthermia and Radiation

The interaction between hyperthermia and radiation in vivo (in living tissue) is

complex. The ability to increase the effect of ionizing radiation is caused by both an

increased direct radiosensitivity and a reduced ability to repair radiation damage (Ben-Hur

et al. 1978; Bronk 1976; Dewey et al. 1980; Dewey et al. 1977a; Gerweck et al. 1975;

Westra and Dewey 1971).

The use of hyperthermia combined with radiation in the treatment of local tumors

offers significant advantages. Evidence from clinical trials indicates that the addition of

heat may significantly enhance tumor destruction compared with radiation alone

(Overgaard 1982). Several studies have shown that the frequency of complete response

is usually doubled by the addition of heat compared with radiation alone (Overgaard

1982). Success has been reported in the treatment of superficial malignant tumors with
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heat in combination with radiation (Emai et al. 1987; Perez and Emami, 1989).

However, experience with hyperthermia in deep-seated tumors is still limited (Petrovich et

al. 1989) and has shown no dramatic therapeutic advantage (Emami et al. 1991).

1.4 Hyperthermia Treatment Methods

Hyperthermia treatments can be given with any one of several methods. The

location and size of the tumor often determine which method will provide the best

treatment. Systemic cancers, especially tumors that have metastasized to multiple sites

within the body, are generally treated with whole-body techniques. Tumors which are

located predominantly in one site are treated with either non-invasive (externally applied)

or invasive (interstitial) hyperthermia methods.

1.4.1 Whole-body Hyperthermia

Many whole-body hyperthermia methods have been used to increase core

temperature. One of the oldest methods to increase core temperature is inducing fever by

administration of bacteria or bacterial toxins which resets the patient's thermostat to a

higher set-point (Coley 1893; Nauts 1982). Other methods can be divided into two forms

- invasive and non-invasive. Applying energy to the body surface is characteristic of

non-invasive techniques which include hot air (Pettigrew et al. 1974); hot water (Barlogie

et al. 1979), either in direct contact with the skin or within bags, mattresses or suits;

infrared electromagnetic radiation (Robins et al. 1985); or a combination of these

methods. Invasive techniques include peritoneal irrigation with heated fluids (Priesching

1976) and extracorporeal circulation (Parks et at. 1979).

One advantage of whole-body hyperthermia is that a homogeneous temperature

distribution can be reached throughout a deep-seated tumor. Disadvantages of whole-



body hyperthermia are that the tumor cannot be heated preferentially and that the

maximum temperature tolerated is between 41.8 and 42 C*(Pettigrew et al. 1974).

Nonetheless, it has been shown that cells of certain tumors can be killed with

temperatures between 41.8 and 42 C.

1.4.2 Non-invasive Hyperthermia

Electromagnetic and ultrasound heating are non-invasive hyperthermia methods

which.have been administered to superficial and deep-seated tumors. Clinical work in the

mid 1970s using electromagnetic and ultrasound applicators was limited initially to the

treatment of small (< 30-40 mm diameter) tumors (Kapp and Meyer 1990). Deep-seated

tumors have been treated with radiofrequency capacitive methods (Song et al. 1986),

radiofrequency inductive methods (Storm et al. 1985), external radiating electromagnetic

methods (Turner 1984; Gibbs 1984; Oleson et al. 1986; Samulski et al. 1987; Kapp et al.

1988), and ultrasound methods (Hahn et al. 1981; Fessenden et al. 1985; Fessenden et al.

1984; Lele 1983; Swindell et al. 1982; Hynynen et al. 1987; Shimm et al. 1988).

1.4.3 Interstitial Hyperthermia

Interstitial hyperthermia can be produced with inductively heated ferromagnetic

thermoseeds (Atkinson et al. 1984; Brezovich and Atkinson 1984; Kobayashi et al. 1986;

Stauffer et al. 1984a), localized current field heating between pairs of temporarily

implanted metallic electrodes (Astrahan and Normal 1982; Emami et al. 1987; Stauffer

1984; Strohbehn 1983; Vora et al. 1982; Zhu and Gandhi 1988), temporarily implanted

microwave antennas (Coughlin et at. 1985; Emami et at. 1987; Salcman and Samaras

1983; Satoh and Stauffer 1988; Strohbehn et at. 1979), resistively heated wires, hot water



perfusion (Brezovich et al. 1989; Hand et al. 1991), or laser irradiation via fiber-optics

(Daikuzono et al. 1987).

1.5 Interstitial Ferromagnetic Hyperthermia

Hyperthermia delivered with inductively heated ferromagnetic thermoseeds is a

promising modality for heating deep-seated tumors (Brezovich and Meredith 1989).

Thermoseeds are implanted surgically into a tumor volume and heated inductively by

electromagnetic waves created by a concentric coil placed around the patient (Fig. 1.1).

With this method, thermoseeds heat tissue locally via thermal conduction. Constant

Induction Coil
Housing Induction

Coil Support
Blocks

Polystyrene Core Induction Coil
and Copper Strip Housing

Ass embly Induction

Coil Support
Blocks

Patient Support
Platform

fT
Caster Wheels #Ztal

Cart
3/4"

(a) Side view (b) End view

Figure 1.1 Electromagnetic coil used to inductively heat ferromagnetic thermoseeds. (Coil design
was developed by collaborators at the University of Alabama-Birmingham.)

Polystyrene
Core
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power and/or self-regulating thermoseeds have been investigated in both theoretical

(Atkinson et al. 1984; Brezovich and Atkinson 1984; Chin and Stauffer 1991; Matloubieh

et al. 1984; Mechling and Strohbehn 1986; Stauffer et al. 1984b; Vanderby et al. 1988;

Tompkins et al. 1992b) and animal studies (Brezovich et al. 1990; Lilly et al. 1985;

Partington et al. 1989; Tompkins et al. 1992a). Self-regulating thermoseeds have been

shown 'to produce better tumor temperature distributions than constant-power seeds

(Brezovich and Atkinson 1984; Matloubieh et al. 1984).

The ability of these thermoseeds to self-regulate is a consequence of their magnetic

properties. Above a critical temperature known as the Curie point, thermoseeds lose their

ability to absorb power. Self-regulating thermoseeds are composed of Ni-Cu (Brezovich

and Atkinson 1984), Ni-Si (Chen et al. 1988; Oleson and Cetas 1982), Ni-Pd (Kobayashi

et al. 1986) and other alloys (Burton et al. 1971; Moidel et al. 1976) and have well

described Curie points. The Curie point can be made different for each thermoseed by

altering the mass fraction of the diluent (e.g., Cu, Si or Pd) in the thermoseed.

An advantage of self-regulating thermoseeds is their ability to absorb power so

that the temperature along the length of the thermoseed is generally maintained within a

few degrees of its operating temperature 2. This method of regulation is advantageous

since it is based upon an intrinsic material property of the implants. A potential

disadvantage of ferromagnetic hyperthermia is that it is difficult to alter the temperature of

individual thermoseeds during a hyperthermia treatment since there is no physical contact

with thermoseeds. Thus there is a need to perform computerized pretreatment planning,

similar to that used in radiotherapy, to predtict temperature distributions a priori.

2The operating temperature of a thermoseed is defined as the temperature where 10 W of energy is
absorbed per meter of length. The Curie point of a thermoseed is generally between 2.5 and 5 C higher
than the operating temperature. The operating temperature, rather than the Curie point, is used
throughout this study because thermoseed temperatures achieved and maintained during a hyperthermia
treatment are closer to the operating temperature than the Curie point.



1.6 Optimization Studies

The following studies have been performed to determine optimum values of

treatment variables in the delivery of hyperthermia: (1) A set of simulation input variables

was determined to optimize a heat treatment for multiple electromagnetic applicators (De

Wagter 1986); (2) A numerical method was developed to determine power deposition

patterns for localized hyperthermia (Ocheltree and Frizzell 1988); (3) An optimization

routine was used in a two-dimensional theoretical investigation to select the amplitudes

and phases of a non-invasive microwave hyperthermia system for deep-seated tumors

(Strohbehn et al. 1989); (4) Optimum amplitudes and phases were selected for 915 MHz

peripheral sources to focus energy so that power outside a focal region was kept below a

threshold (Arcangeli et al. 1984); (5) Yuan et al. (1990) optimized amplitudes and phases

by comparing the theoretically computed results of eight concentric, fixed microwave

apertures and a 4-applicator phased-array with movable apertures; (6) A theoretical study

found that optimum power absorption per unit volume of cylindrical Ni-Si ferromagnetic

thermoseed occurred when the applied magnetic field was axially parallel to the long-axis

of the thermoseed and when the induction number was between 2 and 3 (Haider et al.

1991); (7) An in vivo study investigated the effect of thermoseed orientation within an

electromagnetic coil, interseed spacing, generator power level and the presence of

interstitial catheter sleeves on temperature distributions achieved with interstitial

ferromagnetic hyperthermia (Tompkins et al. 1992a).

1.6.1 Temperature Based Objective Functions

An objective function is a mathematical equation. The maximum (or conversely,

the minimum) of an objective function is expected to yield a set of conditions that will

maximize (or minimize) a particular treatment goal. A systematic study of seven objective
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functions was conducted to determine an optimal set of scanning parameters of an

ultrasound hyperthermia system (Win-Li 1990). The objective functions were based on

either ideal temperature distributions in tumor tissue, normal tissue, the boundary of

normal and tumor tissues, or a combination of these. Criteria that were used to determine

the suitability of a temperature distribution included: (1) all tumor tissue >_ 43 C; (2)

maximum tumor temperature 47 C; (3) tumor-normal tissue boundary = 43 C; (4) small

volume of normal tissue > 40 C; (5) maximum temperature of normal tissue 543 C; (6)

presence of a unique minimum of the objective function; (7) sensitivity of the optimal

scanning parameters to a weighting factor, (8) sensitivity of objective function values to

variations in the scanning parameters at the minimum point; and (9) sensitivity of optimal

scanning parameters to blood flow in tumor and normal tissue. For example, one of the

seven objective functions proposed to obtain a uniform temperature of 45 C within the

tumor model and a uniform temperature of 37 C within the normal tissue model. The

temperature distribution was determined with a finite difference method, and the objective

function is given by
)2 ()2

(Tn - Tn, set )+ X(Tt - Tt,set)2

Nn Nt

In Eq. 1.1, Nn is the total number of finite difference nodes within the simulated normal

tissue; Nt is the total number of finite difference nodes within the simulated tumor; T, is

the temperature of normal tissue at finite difference node n; Tt is the temperature of tumor

tissue at finite difference node t; T, set is a set temperature for normal tissue; Tt, set is a set

temperature for tumor tissue; and q is a scalar weighting factor.
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Results from the study (Win-Li 1990) revealed that all objective functions had

numerous local minima and therefore criteria 6 (above) could not be used to choose the

best objective function. Three of the seven objective functions had a large range of

suitable weighting factors which met all nine criteria above. Thus it was concluded that

these three objective functions were satisfactory and the other four were less desirable. In

words, these three objective functions are:

Objective Function 1: Maximize the ratio of the minimum temperature elevation within

the tumor to the maximum temperature elevation within the

normal tissue and require a uniform temperature on the tumor

boundary of 43 C;

Objective Function 2: Require the minimum temperature within the tumor volume to be

higher than 43 C, a uniform temperature on the boundary of the

tumor and normal tissues at 43 C and a maximum temperature

within the normal tissue lower 40 C;

Objective Function 3: Require a uniform temperature of 45 C within the tumor, a

uniform temperature on the boundary of the tumor and normal

tissues at 43 C, and a maximum temperature within the normal

tissue lower than 40 C.

1.7 Objective and Significance

At the University of Wisconsin-Madison, several patients have been treated with a

combination of interstitial brachytherapy and ferromagnetic hyperthermia. The

hyperthermia treatment usually precedes (and occasionally follows) the brachytherapy

treatment. Ferromagnetic thermoseeds are inserted within catheters whose locations have
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been predetermined by brachytherapy treatment planning. In general, therefore, the

challenge with ferromagnetic hyperthermia is to determine a combination of treatment

variables, such as the interseed spacing and operating temperatures of thermoseeds, that

will achieve the best temperature distribution in the tumor.

The major purposes of this study are to: (1) develop software to predict two-

dimensional temperature distributions in tissue, (2) develop a heat transfer model which

will simulate the thermal behavior of ferromagnetic thermoseeds and catheters, and (3)

develop a physiologically-based objective function to determine optimum seed spacing

and thermoseed operating temperatures used in ferromagnetic hyperthermia, (4) utilize

temperature-dependent blood flow models in simulations, and (5) use a patient-specific

tissue model in simulations. Unique to this study are items (3) and (4). Computerized

pretreatment planning of interstitial ferromagnetic hyperthermia should be possible by

accomplishing these tasks.

This study is described within Chapters 2 through 8. Chapter 2 discusses the

bioheat transfer equation and the modification of a software program to solve the bioheat

equation. Heat transfer models of self-regulating ferromagnetic thermoseeds and

catheters are developed in Chapter 3. The implementation of realistic temperature-

dependent power absorption of self-regulating thermoseeds in the finite element heat

transfer model is discussed in Chapter 4. The formulation of an objective function to

determine optimum values of hyperthermia treatment variables is presented in Chapter 5.

The performance of the objective function to determine optimum thermoseed spacings and

operating temperatures of thermoseeds is presented in Chapter 6. Simulations in Chapter

6 are preformed with a square array of thermoseeds which has been placed in a square

tissue, model with homogeneous and nonhomogeneous, temperature-independent blood

flow rates. In Chapter 7, the objective function is used to determine optimum operating
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temperatures of thermoseeds in the tissue model of a human patient. The effect of

temperature-independent and temperature-dependent blood flow rates on optimum

thermoseed temperatures is evaluated. Conclusions of the pretreatment planning model

and recommendations for further research are discussed in Chapter 8.
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Chapter 2

Tissue Temperature Prediction Using
Bioheat Transfer Equation

Chapter 2 discusses the bioheat transfer equation and its finite element formulation

(Secs. - 2.1 and 2.2). An existing computer program was modified to solve the bioheat

transfer equation. The capabilities of the computer software program are presented in

Sec. 2.3. Some concluding remarks are made in Sec. 2.4.

2.1 Bioheat Transfer Equation

The partial differential equation used for predicting tissue temperatures in all

hyperthermia models to date is based on the bioheat transfer equation by Pennes (1948)

d dT d dT d dT M.. SM

T(kt ) + -(k ) + -(kr+-)+gm + ga

- ptpbcbm(T- Tb) = ptct- (2.1)

In Eq. 2.1, kt is the thermal conductivity of tissue [W/m-C]; Pt is the density of tissue

[kg/m 3]; Pb is the density of blood [kg/m 3]; ct is the specific heat of tissue [J/kg-C]; Cb is

the specific heat of blood [J/kg-C]; m is the volumetric flow rate of blood per unit mass of

tissue [m 3/s-kg]; gm is the energy dissipation rate per unit volume due to metabolic
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processes [W/m 3]; ga' is the energy absorption rate per unit volume of tissue from an

applied energy field [W/m 3]; T is tissue temperature [C]; Tb is the blood temperature [C]; t

is time [s]; and x, y and z are the orthonormal directions [m] in a rectangular coordinate

system.

Some assumptions can be made to simplify Eq. 2.1. One assumption is that

tissue absorbs a negligible amount of energy at the electromagnetic field frequencies (-95

kHz) used in ferromagnetic hyperthermia. Therefore, ga 0. Another assumption is that

the rate of energy dissipated in tissue due to metabolic processes gm can be small relative

to the energy applied to the tissue by a hyperthermia system (Jain 1983). Therefore, g..~

0. In addition to these assumptions, the transient time during the hyperthermia treatment

is often small relative to the steady-state time (Partington et al. 1989; Tompkins et al.

1992a). Hence steady-state solutions to Eq. 2.1 are usually sought.

Setting the mass flow rate of blood per unit volume of tissue wb [kg/s-m 3] equal

to PtPI9, the two-dimensional, steady-state form of Eq. 2.1 becomes

d dT 6) 37"
+ - WbCb(T - -Tb) 0 (2.2)

Equation 2.2 is only an approximation. The major assumption with the use of Eq.

2.2 is that heat transfer occurs between tissue and blood in the capillary bed, which is

made of many small, 6ji-diameter (Ganong 1967) blood vessels. The blood vessels in

the capillary bed are assumed to be nondirectional. The number density of arterioles (30

M-diameter), capillaries, and venules (20 au-diameter) are sufficiently large and the blood

flow sufficiently low that the temperature of tissue and the blood at the ends of the

capillaries are assumed equal. Thus blood enters the local tissue volume at the arterial
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temperature and leaves this volume at the local tissue temperature. Pennes (1948)

modeled the net energy transfer between tissue and blood as a linear heat sink as defined

by the third term on the left-hand side of Eq. 2.2.

There are other limitations to Eq. 2.2. The equation neglects the heat transfer

related to the mass transfer of blood and the cooling of individual large vessels. Equation

2.2 also neglects the energy transfer between tissue and the venous system by assuming

an infinite thermal equilibration length for all venous vessels. In reality, heat transfer is

not limited to energy transfer between tissue and capillaries but occurs also in arteries and

veins (Chen and Holmes 1980; Mitchell et al. 1970; Perl 1965; Wissler 1963).

Countercurrent heat transport between adjacent vessels has also been shown to be

significant (Weinbaum and Jiji 1985; Johnsen 1989; Mitchell et al. 1970). Nonetheless,

temperature distributions as predicted by Eq. 2.2 have been shown to be useful and

accurate (Matloubieh et al. 1984). Additional details on the formulation and limitations of

the bioheat transfer equation can be found elsewhere (Bowman et al. 1975; Roemer

1988).

Other bioheat transfer equations have been developed which model the vascular

architecture of the body more directly than the Pennes equation (Chen and Holmes 1980;

Lagendijk 1982; Weinbaum et al. 1984; Weinbaum and Jiji 1985). These equations are

generally more complex than the Pennes equation. For example, the bioheat transfer

equation of Weinbaum et al. (1984) has tensor thermal conductivity terms to model heat

transfer in tissue where the blood flow has a strong directional dependence. Equations of

these type often require vast details of the vascularity in the tissue. Since anatomical

details of this complexity are limited, heat transfer modelers have not, to date, used these

other bioheat transfer equations to predict temperatures for hyperthermia pretreatment

planning.
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Material and thermal properties of tissue and blood are generally independent of

temperature and considered uniform throughout each tissue type. Blood flow rates,

however, can depend on temperature. Experiments with muscle and skin tissues of mice

have revealed large increases in blood flow rates with increasing temperature (Song et al.

1984). Simulations in the present study will be performed for several constant blood

flow rates ranging from m = 0 to 1 1/min-kg (see Chapters 3 through 7). In addition, the

effect of temperature-dependent blood flow rates on temperature distributions will be

studied in Chapter 7.

2.2 Finite Element Formulation of Bioheat Transfer Equation

Equation 2.2 has exact analytical solutions when applied to a square domain with

various boundary conditions (Carslaw and Jaeger 1959). Solving the bioheat transfer

equation for realistic tissue models, however, requires a numerical solution since the

anatomical structure of tissues is complex. Tumors and surrounding normal tissues are

often made up of several different tissue types, each with their own thermal properties and

blood flow rates. It is therefore not practical to obtain an analytical solution of the bioheat

transfer equation for realistic tissue models. Thus the finite element numerical method

was used to solve Eq. 2.2. The following is a brief overview of the Galerkin approach of

the fmite element method (Myers 1989).

After rearranging terms, Eq 2.2 can be multiplied by a weighting function f(x,y)

and then integrated over the tissue area to give

II~isuef~xy(-kg, --") + "1Jf~isuef~x~) (c-kt-+ ?x) (-kt) + wbCb (T - Tb)j dx dy = 0 (2.3)
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It is assumed that the temperature distribution within the tissue can be approximated by N

terms

T (xy,t) = wl(xy) T 1(t) + w2(xy) T2(t) +... + wi (xy) Ti(t) +... + WN (x,y) TN(t)

where wi (x,y) are linear interpolating functions and Ti(t) are temperatures at specific

points within the tissue region. A set of N differential equations can be obtained by using

N independent functions f, (x,y), ... , fi (x,y), ... , fN (xy). The Galerkin technique

requires that each fi (xy) = wi (xy). After performing several integrations, utilizing

matrix techniques and algebra (see Appendix A), Eq. 2.3 can be cast into a system of N

ordinary differential equations. In matrix notation, these equations are

CT + (K + B)T = b + qO (2.4)

In Eq. 2.4, C [J/m-C], K [W/m-C] and B [W/m-C] are the capacitance, conduction and

perfusion matrices, respectively; T [C] is the temperature vector; T [C/s] is the vector

containing the time rate of change of T; b [W/m] is the perfusion vector, and q. [W/m] is

the vector containing the energy inflows at the boundaries of the tissue model. Notation

for the C and K matrices and the T, T and q. vectors were defined previously by Myers

(1987).

2.3 Numerical Solution Software

The finite element heat transfer computer program called EEHT (pronounced

'feet') that was developed previously to solve heat conduction problems (Klein et al.

1988) was modified to solve Eq. 2.4. The modification required the inclusion of the
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perfusion matrix B and perfusion vector b into the equation solving routine FEM2D

(Myers 1987) of FEHT.

The modification of FEHT to solve bioheat problems is illustrated by the 'Bio-

Heat Transfer' menu item in the 'Subject' menu of FEHT (Fig. 2.1). By simply selecting

the 'Bio-Heat Transfer' menu item, the user is capable of solving Eq. 2.1 numerically

with the finite element method. The blood temperature Tb (see Eq. 2.1) can be specified

by selecting the 'Blood Temperature' menu item located at the bottom of the 'Setup' menu

in FEHT (Fig. 2.2). The modifications to FEHT shown in Figs. 2.1 and 2.2 were made

by Klein (1989).

SFile Setup Draw Display
L1

Heat Transfer
Steady Electric Currents
Electrostatics
Magnetostatics

/Bio-Heat Transfer
Potential Flow
Porous Media Flow

Figure 2.1 A screen display of the 'Subject' menu in FEHT depicting the selection of
the 'Bioheat Transfer' menu item. By selecting the 'Bio-Heat Transfer' menu item, the
user can solve problems which are described mathematically by Eq. 2.1. The 'Bio-Heat
Transfer' menu item was created by Klein (1989).

FEHT can predict either steady-state or transient temperature distributions (Klein

et al. 1988). Steady-state temperatures are determined by solving a set of algebraic

equations (Appendix A). Transient temperature distributions are obtained by solving Eq.

2.4 with either the Crank-Nicolson or the Euler method (Appendix A). FEHT has been

u -b] e. 7c
m
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File Subject
T , IDraw Display

Units and Scale

v Cartesian
Cylindrical

v Steady-State
Transient

%Temperature in °C
Temperature in OK

Blood Temperature

Blo Temperatur

Temperature =

Cancel

137.00 1°C

mOK

Figure 2.2 A screen display of the 'Setup' menu in FEHT displaying the 'Blood
Temperature' menu item. By selecting the 'Blood Temperature' menu item, the user can
set the blood temperature Tb in Eq. 2.1. The 'Blood Temperature' menu item and dialog
box were created by Klein (1989).

designed for use on Macintosh computers. FEHT will allow either constant, spatially-

dependent, temperature-dependent or time-dependent properties (Klein et al. 1988). The

accuracy of the temperature distribution computed by FEHT was evaluated for a simple

tissue model (Appendix B).

R
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FEHT contains its own preprocessor to define tissue regions (Klein et al. 1988).

Contours of tissue regions can be 'pasted' into FEHT via the Macintosh clipboard feature.

Using pull-down menus and internal algorithms, arbitrarily-shaped tissue regions can be

outlined. The simulated tissue regions are then discretized into several triangular-shaped

areas called finite elements. The vertices of the triangular-shaped elements are called

nodes, and the lines connecting the nodes are called element lines. Finite element nodes

Display Run Output
Mati. Properties M
Generation

Boundary Conditions 39B

Initial Temperatures

-Spcif Prperie

Fat
Muscle (Vitro)
Muscle (Viuo)
Feces
Skin (itro)
Bone
Catheter

Thermoseed

ITumor Periphery

Name - ITumor core I
Type = Distributed I

Pattern=olor

Conductiuity = 0.64 W/m-°C

Density = 1080 kg/m3

Specific Heat = 3800 IJ/kg-°C

Perfusion*Cp = 2000 W/m3-*C

Properties may be entered as a function of T, X, Y and/or Time,

Figure 2.3 A screen display of the 'Specify' menu in FEHT showing the 'Mad. Properties' menu item.
By selecting the 'Mad. Properties' menu item, the user can specify tissue properties including thermal
conductivity kt, density Pt, specific heat ct, and tissue perfusion wbcb. Properties can be entered as a
function of x, y, temperature T and/or time t. The addition of the ?erfusion*Cp =' feature to the 'Specify
Properties' dialog box was performed by Klein (1989).

Specifu
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and lines are created by FEHT with simple, computer-based 'mouse' operations. An

automatic finite element mesh reduction capability is provided (Klein et al. 1988).

Material, thermal and blood flow properties of each tissue are specified by

'mouse' operations and keyboard entries (Fig. 2.3). The numerical expressions for

spatially-dependent, temperature-dependent or time-dependent blood flow rates can be

entered with keyboard entries (Klein 1989). Boundary conditions including constant

temperature, specified heat-flux and convective boundaries can be specified easily with

FEHT. A check to ensure the completeness of the finite element mesh can be made with a

pull-down menu. These and several other capabilities including a text editor are discussed

in the FEHT reference manual (Klein et al. 1988).

FEHT has several post-processing features (Klein et al. 1988). Temperatures

predicted by FEHT can be viewed at nodal locations or as contours of iso-lines or multi-

colored shaded bands. Heat flows across element lines and nodal energy balances can

also be displayed. Solutions to transient problems can be viewed such as the temperature

or energy flow versus time. Lastly, FEHT produces a report which includes all input data

and output data such as the predicted temperatures and energy balances of all nodes (Klein

et al. 1988).

2.4 Concluding Remarks

The bioheat transfer equation (Pennes 1948) is used in this study to predict

temperature distributions in tissue. The assumptions and limitations of the bioheat

transfer equation by Pennes were discussed. The Pennes bioheat equation has been

shown to adequately predict temperature distributions in tissue models simulating

hyperthermia treatments (Matloubieh et at. 1984). In addition, other proposed bioheat

transfer equations were discussed. These other bioheat transfer equations, such as the
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Weinbaum and Jiji (1984) bioheat equation, generally require details of vascular anatomy

that are not yet tractable for routine use in thermal modeling of tissue systems. Thus the

bioheat equation of Pennes was used in this study.

The finite element method was used to transform the bioheat equation into a

system of equations which can be solved with a computer. The existing computer

program FEHT was modified by Klein (1989) to solve the bioheat equation. The

capabilities of the FEHT program were discussed.
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Chapter 3

Ferromagnetic Thermoseed and Catheter Models

Thermal models of ferromagnetic thermoseeds have been developed previously. An

analytical model simulating thermoseeds as point sources of heat was developed

(Atkinson et al. 1984; Brezovich and Atkinson 1984). The studies of Atkinson et al.

(1984) and Brezovich and Atkinson (1984) revealed that the temperature uniformity in

tumors heated by self-regulating thermoseeds was better than that in tumors with constant

power implants. The difference in temperature uniformity became obvious in tumor

models with very large or very small rates of blood flow and in tumors heated with

irregular implant spacings. By modeling thermoseeds as point sources, Brezovich and

Atkinson (1984) neglected the finite size of the thermoseeds and catheters where no tissue

perfusion is present. In another finite difference model, parametric studies were

performed to study the effect of blood flow on temperature distributions (Vanderby et al.

1988).

A finite difference model was developed by Matloubieh et al. (1984) and

subsequently used by others (Chen '1989; Chen et al. 1991; Haider et al. 1991). An

empirical power absorption formula developed by Haider et al. (1991) for thermally self-

regulating Ni-Si ferromagnetic thermoseeds was used to compare two- and three-

dimensional simulations for ferromagnetic implant hyperthermia (Chen et at. 1991). The

results show that two-dimensional simulations can significantly over estimate
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temperatures. However, Chen et al. (1991) also concluded that for ferromagnetic seeds

longer than 30 mm, two-dimensional calculations will yield reasonable estimates for the

central cross-sections.

The finite element method has been used to compute temperature distributions

resulting from an implant array of thermoseeds and were compared with the heating

patterns of interstitial microwave antennas and radiofrequency electrode needles

(Mechling et al. 1986). In a parametric study, Mechling et al. (1986) showed that

microwave antennas adequately heated a larger number of simulated tissues to therapeutic

temperatures than either ferromagnetic thermoseeds or radiofrequency electrode needles.

The finite element method was also used to compare two- and three-dimensional

thermal models of thermoseeds and determine the appropriate use and limitations of the

two-dimensional model (Chin and Stauffer 1991). Chin and Stauffer (1991) showed that

the two-dimensional thermal model, which assumes infinite extent of the ferromagnetic

seed(s), is applicable for calculating temperature distributions in any plane perpendicular

to the axes of the thermoseed(s) up to 10 mm from the ends of the seed(s).

An analytical thermal model of a single thermoseed implanted in tissue is developed

in this chapter (Sec. 3.1). Numerical thermal models of thermoseeds (and catheters)

including a point-source and two finite-sized thermal models are developed in Sec. 3.2.

Temperature distributions from the analytical model are compared with the finite-sized

numerical thermal models (Sec. 3.3). A method for placing finite-sized models of

thermoseeds and catheters in finite element meshes created by FEHT is presented in Sec.

3.4. Concluding remarks are discussed in Sec. 3.5.
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3.1 Analytical Thermal Model

An energy balance was performed on a small circumferential element of tissue to

determine the analytical steady-state temperature distribution T(r) in the tissue model

shown in Fig. 3.1. The tissue model in Fig. 3.1 is the radial cross-section of a

cylindrically-shaped tissue system in which the long axis of a thermoseed was placed

along the centerline of the tissue.

The following assumptions were made in the development of the analytical

thermal model: i) the ferromagnetic thermoseed is assumed infinite in length and the

cross-section in Fig. 3.1 is at the central plane, therefore, thermal conduction was in the

radial direction only (Chen et al. 1991, Chin and Stauffer 1991); ii) energy entered and

left the system via blood flow; iii) the thermal conductivity kt of the tissue was that of

resting muscle tissue (kt = 0.64 W/m-C) and was constant and uniform throughout the

simulated tissue; iv) the specific heat cb of blood (Cb = 3900 J/kg-C) was also constant

and uniform; v) the tissue absorbed a negligible amount of energy at the electromagnetic

field frequencies (- 95 kHz) used in ferromagnetic hyperthermia; vi) the rate of energy

dissipation by metabolic processes within the tissue was negligible (Jain 1983); vii) the

blood temperature was constant and equal to the body core temperature of 37 C; viii) the

thermal contact resistance at the interface of the thermoseed and tissue was negligible.

With the assumptions discussed above, an energy balance on the circumferential

element of tissue yields

d (r dT) - n2 r (T - Tb) = 0& & r(3.1)

In Eq. 3.1, r is the radial length [m] and n is a parameter equal to = 4Wb~jkt [m-l].

Substituting 6(r) = T(r) - Tb, Eq. 3.1 becomes
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Tissue



0000
Tbermoseed

r)Ar T

Figure 3.1 Radial cross-section of a thermoseed (cross-hatched-shaded circle) implanted at the
center of a cylindrical tissue model (light-shaded region). Conductive and convective-like energy
inflows and outflows into the differential tissue area (dark-shaded region) are shown.

d (rdO) - n 2 r O(r) = 0
dr dr (3.2)

Since thermoseeds are heated inductively by eddy currents (Sec. 4.1.1), a heat

flux q" [W/m 2] is produced at the inner radius ri of the tissue model. The outer radius ro

of the tissue model was assumed to have a temperature equal to body core temperature (=

Tb). Thus the boundary conditions for Eq. 3.2 are given by

r =r q" = = -k, 4 Q. I
As &r=ri

r =ro: 0=0

(3.3a)

(3.3b)
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In Eq. 3.3a, P' [W/m] is the energy absorption rate per unit length of a thermoseed which

is parallel to an electromagnetic field (Sec. 4.1.1), i is a unit length multiplier, and As

[M 2] is the cross-sectional area of the thermoseed. The solution to Eq. 3.2 for the

temperature distribution in the tissue as a function of radial distance was found to be

0(r)= P ri [Io(nro) Ko(nr) - Ko(nr0) Io(nr)] (3.4)
2 Asn kt [Ii(nri) Ko(nr0) + Io(nro) Kl(nri)]

In Eq. 3.4, Io and Ko are modified Bessel functions of the first and second kind of order

0, respectively, and I and K1 are modified Bessel functions of the first and second kind

of order 1, respectively (Abramowitz and Stegun 1964).

3.2 Numerical Thermal Model

The development of a numerical thermal model for a ferromagnetic thermoseed

begins with a discussion of the appropriate form of the energy equation (Sec. 3.2.1). A

point-source thermal model of a thermoseed is discussed in Sec. 3.2.2 and the finite-sized

thermal model is developed in Sec. 3.2.3.

3.2.1 Energy Equation

All of the assumptions discussed in Sec. 3.1 are valid in the development of the

numerical thermal model of a thermoseed. The heat conduction in the simulated tissue in
Fig. 3.1 is assumed to be one-dimensional, and the solution for the temperature

distribution using the numerical method is sought for heat conduction in only the radial
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direction. Because FEHT determines temperature distributions in two dimensions, Eq.

2.2 is the energy equation which will be solved with the fimite element method.

3.2.2 Point-source Thermal Model

The finite element mesh of a symmetrical portion of the circular tissue model shown

in Fig. 3.1 was created with FEHT and displayed in Fig. 3.2. Five finite element meshes

r A

"6 1
6 0=0

L 0 ThermoseedPoint-Source Model:I Fixed Temperature Node = Ts

Figure 3.2 The finite element mesh of a symmetrical portion of the thermoseed and tissue shown
in Fig. 3.1. The thermoseed is modeled as a node of fixed temperature Ts. The two radial edges at 0
= 0 and 0 =ir/4 are adiabatic boundaries since they are lines of symmetry. The outer edge at r = ro is
fixed at the body core temperature Tb.
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were created consisting of 172, 176, 180, 184 and 736 elements. The meshes with 176,

180 and 184 elements were created by increasing the number of finite elements near the

thermoseed of the mesh with 172 elements. The finite element mesh of 736 elements was

created by reducing uniformly the mesh of 184 elements. (Thus there were four finite

elements in the mesh with 736 finite elements for every element in the mesh with 184

elements.) The lower comer of each mesh is enlarged to show details of the finite element

mesh near the point source (Fig's. 3.3a through 3.3e). In each mesh in Fig. 3.3, the

finite element node in the lower left-hand comer was used to simulate a ferromagnetic

thermoseed as point source of heat.

(a) 172 elements (b) 176 elements (c) 180 elements

(d) 184 elements (e) 736 elements

Figure 3.3 Enlarged lower comer of the finite element mesh shown in Fig. 3.2. Meshes contained
either (a) 172 elements, (b) 176 elements, (c) 180 elements, (d) 184 elements or (e) 736 elements. Circles
designate finite element node locations.
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The power per unit length P' leaving the thermoseed point-source model was

computed by performing an energy balance on a differentially-sized area around the

simulated-thermoseed node (Sec. A.2.4 in Appendix A). The differentially-sized area is

the summation of 1/3 of the area of each finite element surrounding the simulated-

thermoseed node. The energy balance was computed with FEHT and equaled the power

P' that would leave the thermoseed point-source model.

Simulations were performed to study the influence of element discretization and

blood flow rate on the power P' leaving a thermoseed. Simulations were performed with

blood flow m of 0.01, 0.1 and 1 I/min-kg3. The thermoseed was modeled as a node with

a fixed temperature T, = 60 C (Fig. 3.2). The two radial edges of the tissue model are

specified adiabatic boundaries (lines of symmetry). The outer edge of the tissue at r = r,

was at body core temperature of Tb = 37 C (Fig. 3.2).

Results of the simulations are shown in Table 3.1 and Fig. 3.4. In Fig. 3.4, the

power per unit length P' leaving the simulated-thermoseed point-source model is shown

versus the normalized nodal area. For the five finite element meshes, the nodal area

around the point source was normalized to the largest nodal area, that of the mesh with

172 elements (as labelled with vertical arrows in Fig. 3.4). The power P' leaving the

thermoseed-node decreased with decreasing nodal area. As shown by the three curves in

Fig. 3.4, P' approaches zero as the nodal area approaches zero. In the limit, therefore,

the temperature gradient at the surface of the thermoseed would be infinite.

In conclusion, the zero-area, point-source thermoseed model is an invalid model to

simulate the therml behavior of a thermoseed. Other studies are consistent with the re-

3Often blood flow rates are given in units of ml/min-(100 g of tissue). However, the units of ml, min
and g are all non SI. To be in more agreement with SI standards, blood flow rates in the present study
will have units of 1/mmn-kg. To convert from ml/min-(100 g of tissue) to 1/mmn-kg, simply divide by
100.
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Table 3.1 Power P' of the Point-Source Numerical Thermoseed Model

Number of Energy Balance Blood Flow Nodal Energy
Finite Elements Area (in2) Rate, m (I/min-kg) Balance, P' (W/m)

172. 2.25e-6 0.01 2.90
it"0.1 4.10
to "_"1 7.37

176 1.05e-6 0.01 2.65
"t"f0.1 3.61
ft " 1 5.81

180 3.76e-7 0.01 2.38
" "0.1 3.11

...._ _1 4.56

184 7.91e-8 0.01 2.03
0.1 2.60

"_"_1 3.50

736 1.98e-8 0.01 1.83
ft 0.1 2.24

"_"_1 2.87

8

1 IlVmln-ikg
S 6 -

zg 4

22

"0 0.01 /mi-kg

0 0.2 0.4 0.6 0.8

Normalized Nodal Area

Figure 3.4 Power per unit length P' leaving the point-source numerical
thermoseed model versus the normalized nodal area. Simulations were performed
with blood flow in tissue m = 0.01, 0.1 and 1 /min-kg and with finite element
meshes consisting of 172, 176, 180, 184 and 736 elements.
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suits obtained with the thermoseed point-source model. Chen (1989) and Haider et al.

(1991) have shown that modeling thermoseeds as line sources in three dimensions can not

accurately represent the physical behavior of thermoseeds.

3.2.3 Finite-Sized Thermal Model

Although thermoseeds are circular in radial cross-section, the finite element method

uses linear elements. Thus the finite-sized numerical thermal models of the circular

thermoseed were approximated by straight-line segments. A regular hexagon and a

dodecagon (12-sided polygon) were studied as models for thermoseeds (Fig. 3.5). The

cross-sectional areas of the hexagonal As, reg. hexagon and dodecagonal As, dodecagon

thermoseed models were equal to the cross-sectional area As of a thermoseed.

The thermoseed was modeled as a thermally-lumped material because of its high

thermal conductivity (ks- 25 W/m-C) and its small thickness (2a = 0.9 mm diameter).

Thus the thermal conductivity of the thermoseed is assumed to be infinite since this model

assumes there is a negligible temperature gradient within the thermoseed4 . The

4The temperature profile T(r) within a thermoseed with energy generation gs.'"= 1.5e7 W/m3 , a thermal
conductivity ks = 25 W/m-C (55% Cu and 45% Ni, Incropera and Dewitt 1985), no blood flow, a seed
radius a = 0.45 mm and a seed surface temperature Ts = 48 C can be determined with the following
equation

50

" 49

T(r) A[1 - (rla)2 ] + T, 48
4k,

4 6 ,, , , ,
0 0".1 0.2 0.3 0.4a 0.5

Radial Distance, r (mm)

Notice the flat temperature profile within the thermoseed. Therefore the assumption of a negligible
temperature gradient within the thermoseed is justified.
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thermoseed was modeled with zero blood flow (wbCb s = 0). The thermoseed was also

modeled with an energy absorption rate per unit volume g" which was numerically equal

to the energy absorption rate per unit length P' divided by the cross-sectional area of a

thermoseed AS. The catheter5 was modeled as a region of distributed temperature with a

thermal conductivity kct = 0.34 W/m-C (Clay-Adams Co., 1991) and with zero blood

flow (WbCb cat = 0). The area of the catheter model was equal to the area of an actual

catheter with a wall thickness tcat 0.35 mm. It is assumed that the thermoseed and

catheter are in perfect contact, and therefore, there is no temperature drop across the

interface of the catheter and thermoseed models.

The transfer of energy from the thermoseed to the surrounding tissue (or catheter,

if present) was modeled with a convection boundary coefficient hi1. The product hijAi

represents the thermal conductance between thermoseed i and finite element nodej of the

thermoseed, where A is the boundary-segment area of node j(Fig. 3.5). A simulation

study was performed to determine an adequate numerical value for h-- such that the

thermal resistance (1/hijAij) between the thermoseed and tissue (or catheter) is negligible.

(Using extremely large values of h-. results in numerical problems for FEHT.6 )

Simulations were performed with a finite element mesh created for a symmetrical portion

of the tissue model in Fig. 3.1 (Fig. 3.6). An enlargement of the dodecagonal

thermoseed model and surrounding finite elements in the tissue model are shown in Fig.

3.7. In the simulations, the energy absorption rate per unit volume of thermoseed gS (=

P'As, dodecagon) was 2.02e7 W/m3 . The FEHT program was used with values of hi,

between le2 and le6. Temperatures Ts, sfwacej at five finite element nodes (i = 1, 2,

5The catheter is a small-diameter polyetheylene tube that is placed in the body and is used as a sleeve for
thermoseedls.
6Simulations in this study used versions of FEHT less than Ver. 6.2. However, since double-precision is
used in all calculations with Ver. 6.2 or greater, the numerical instability problem with hjcan most
likely be avoided.
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kt (cat i) aTn

= iv- wIm - ; f 7 - kc cati) - aIncat o
A i 1 i n,

- j= 6 aT
-kcat t n cto

Finite element
line WbCb, s = 0  

,

Finite element P' g"A reg. hexagon

node R s j=2rs TS,lmpdi

SS too- S[Catheter model w/area Acat"
rctDistributed temperature

'cat Hexagonal thermoseed model
WbCb, cat = 0 w/areaAs, reg. hexagon:

catkca = 034 W/m-C Lumped (or uniform) temperature
V \ I cat

Mensuration Formulas (Beyer 1981):

Hexagonal Thermoseed Model:

ns =number of sides = 6
ss cot (180/n3)

rs = Radius of inscribed circle = 2

Rs = radias of circumscribed circle = ss csc 080/n,)2

As, reg. hexagon ns s cot (180/ns) = A , circle - r a2

Catheter Model:

ncat = numberof sides = 12

Sca cot (180/nca)
rcat = Radius of inscribed circle = 2

s csc (18 0/ncat)
Rcat = radius of circumscribed crcle = 2

nc2=c sct(180/nca) = r(tf+2att) =Acat =4 C

(As, circle + Acag circular) - As, circle

Figure 3.5a Finite-element thermoseed and catheter models: (a) regular hexagon thermoseed
model and (b) dodecagonal thermoseed model. Mensuration formulas are used to determine several
dimensions in the models. A unit length multiplier i is shown in several locations. Four thermal
boundary conditions are shown.
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12 aT
~c (Tfcj-sums = ; -k(" i) -Inc

- kt (icat i) TI
an

aT

an ct

Catheter model w/area A cat:
Distributed temperature

bDodecagonal thermoseed model
w/area As, dodecagon:"
Lumped (or uniform) temperature

Mensuration Formulas (Beyer 1981):

Dodecagonal Thermoseed Model:

n s = number of sides = 12
ss cot (180/n)

rs = Radius of inscribed circle =s 2
2

R s = radius of circumscribed circle = s, csc (180/n,)
2

Addecagn s  cot(180/n ) = As, circle = a 2

Catheter Model:

See Fig. 3.5a.

Figure 3.5b Finite-element thermoseed and catheter models: (a) regular hexagon thermoseed
model and (b) dodecagonal thermoseed model. Mensuration formulas are used to determine several
dimensions in the models. A unit length multiplier i is shown in several locations. Four thermal
boundary conditions are shown.
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r

T(ro) -T b

do=10-0=

Figure 3.6 The finite element mesh of symmetrical portion of the thermoseed and tissue in
Fig. 3.1. The two radial edges at 0 = 0 and 0 = 2;r/3 are adiabatic boundaries since they are
lines of symmetry. The outer edge at r = ro is fixed at the body core temperature Tb. The
region enclosed by the square is enlarged and illustrated in Fig. 3.7. The dark-colored region
near the thermoseed is the result of a finely graded mesh.
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Finite element mesh of
simulated tissue

Finite-sized
thermoseed model
(see Fig. 3.5)

Figure 3.7 Enlargement of area enclosed by the square in Fig. 3.6. The outer edge of
the (dodecagonal) thermoseed model has four line segments. There is no catheter in this
model.

Table 3.2 Thermal Conductance Study of Finite-Sized Thermoseed Model

Convection Nodal Thermoseed Surface Temperatures, Lumped
Coefficient, Ts, surface j ThermoseedC0_hi-(C) 

_Temperature,

(W/m2 -C) j_1 j = 2 j = 3 j=4 j=5 Ts,lumped (C)
le2 49.5 49.4 49.4 49.5 49.4 95.6
1e3 49.5 49.4 49.4 49.5 49.4 54.0
le4 49.5 49.4 49.4 49.5 49.4 49.9
1e5 49.4 49.4 49.4 49.4 49.4 49.5
le6 49.4 49.4 49.4 49.4 49.4 49.4

5 in Fig. 3.5b) on the surface of the thermoseed and the lumped temperature T, lned of

the thermoseed are shown in Table 3.2. A convection boundary coefficient of 1e6 was an

adequate value for h since the surface temperatures Ts, sfrcej of the thermoseed were

within 0.05 C of the lumped temperature Ts, tumpea of the thermoseed.
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3.3 Thermoseed Model Validation: Numerical vs. Analytical Solutions

Temperature distributions were computed with FEHT using the hexagonal and

dodecagonal thermoseed models and the finite element mesh in Fig. 3.6. The

numerically-determined temperature distributions were compared to the analytical solution

0.8 m = 0.1 I/min-kg

23m = 0.5 I/min-kg
0.6-

[ I II

. 0.4 m =1 l/min-kg
/0.4

0.2-
Seed
Radius

a
0 2 4 6 8 10

Radial Distance, r (mm)

Figure 3.8 Normalized temperatures as a function of radial distance r for blood flows m
= 0.1, 0.5 and 1 l/minLkg. Solutions were obtained with the analytical thermoseed model
(solid lines) and the numerical hexagonal (short dashed lines) and dodecagonal thermoseed
(long dashed lines) models. The power absorption per unit length P' of thermoseed used
in these calculations was 17.17 W/m which gave a normalized thermoseed temperature of
1 for the analytical model with a blood flow m = 0.1 /min-kg.

(Eq. 3.4) for blood flow rates of m = 0.1, 0.5 and 1 1/min-kg (Fig. 3.8). In Fig. 3.8, the

temperature distributions were normalized by subtracting the numerical and analytical

solutions T(r) from Tb and then dividing by the temperature elevation above body core

temperature (= Ts, analytical, m, = 0.1 - Tb). Thermoseed temperatures Ts (r = a) computed

by FENT were approximately 0.5 C lower than the analytical solution for all three blood
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flow rates (m = 0.1, 0.5 and 1 1/min-kg). Thermoseed temperatures of the numerical

models were lower than that of the analytical model because of the geometric

approximation of a circle by a regular hexagon and a dodecagon. Nonetheless, the

temperature distributions in the tissue computed by FEHT for both numerical thermoseed

models agree well with the analytical solutions (Fig. 3.8).

3.4 Placement of Thermoseed Model using FEHT

The creation of finite element thermoseed and catheter models using the 'Outline'

and 'Element Line' features within FEHT typically requires about 10 to 15 min7 per

thermoseed. Often ferromagnetic hyperthermia patients will be implanted with 8 to 16

catheters, each containing one or several thermoseeds. Thus finite element modelers can

expect to spend approximately 1.5 to 3 hours creating thermoseed and catheter models

with the 'Outline' and 'Element Line' features in FEHT.

Fortunately, an algorithm for placing models of thermoseeds within a finite element

mesh was developed by Klein (1989) and incorporated into the FEHT program. Only

two steps are required to 'place' a thermoseed model within the finite element mesh.

First, the 'Add Seed' menu item from the 'Draw' menu in FEHT is selected (Fig. 3.9).

By selecting the 'Add Seed' menu item, the Macintosh mouse arrow changes into a cross-

hair. By moving the mouse, the cross-hair can be positioned over the center of the

desired location of a thermoseed. Then, by pressing the mouse button, the dodecagonal

thermoseed model, surrounded by the catheter model consisting of 24 finite elements

(Fig. 3.5) and another 44 finite elements in the tissue are placed with the mesh. An

7 Most of the time is spent painstakingly positioning the cross-hair exactly in the correct position for each
finite element node so that the area of the thermoseedt model A5, dodcagonai and the catheter model Acag
are equal to the area of real thermosed and catheters. This process often involves several (frustrating!)
attempts until the areas are equal.
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example of the 'before' and 'after' images of placing the thermoseed model with the finite

element mesh is illustrated in Fig. 3.10. With the aid of the 'Add Seed' algorithm, models

of 8 to 16 thermoseeds and catheters can be created within about three to five minutes.

File Subject Setup

Z l
Display Specify

Figure 3.9 Display of the 'Add Seed' menu item in the 'Draw' menu of FEHT. The
'Add Seed' menu item was created by Klein (1989).

Outline 0
Element Lines XL
Reduce Mesh Size XW
Reposition Nodes XR
Delete RD

Text XT

Size/Moue Template

Group
Ungroup RH

Rdd Seed U

I ru
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(a) Tumor region before 'Add Seed' (b) Tumor region after 'Add Seed'
Figure 3.10 The finite element representation of the (a) 'before' and (b) 'after' images upon utilizing
the 'Add Seed' algorithm within FEHT. The 'after' image shows the dodecagonal thermoseed model
(light-shaded region), the catheter model (dark-shaded region) and 44 finite elements in the tumor model.

Some recommendations are in order regarding the use of the 'Add Seed' thermoseed

placement algorithm:

1. It is recommended that the zoom (or magnification) feature in FEHT be used prior
to placement of the thermoseed. Since thermoseeds have a small radius (r, = a =

0.45 mm) compared to the dimensions of the tissue(s), (fully) magnifying the

tissue region where a thermoseed model is to be placed will reduce the possibility

of having finite element nodes placed on top of one another when the "Add Seed'

algorithm is performed.

2. The time and effort required to create thermoseed models with the 'Add Seed'

algorithm is a small fraction of the total time needed to create the entire finite

element mesh. Thus it is recommended that the placement of the thermoseed
models be left as one of the last tasks before completing the entire finite element

mesh. Having a saved version of the nearly completed mesh prior to placement

of thermoseed models will allow the user to study different thermoseed locations

without having to create entirely new finite element meshes.
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3. The 'Add Seed' algorithm places 44 finite elements within several millimeters

from the outer edge of the catheter model (Fig. 3.10b). Therefore leave an

adequate amount of space in the finite element mesh to avoid overlapping of

existing and newly-placed finite elements.

3.5 Conclusion

Analytical and numerical thermal models of ferromagnetic thermoseeds were

developed in this chapter. Results from the point-source numerical thermoseed model

showed that the thermoseed power P' goes to zero as the nodal area around the seed, over

which the energy balance is performed, approached zero. In this case, the temperature

gradient at the surface of the thermoseed would be infinite. Thus the point-source model

is an invalid model. The finite-sized thermoseed models in radial cross-section consisted

of regular hexagons and dodecagons (12-sided polygons). Figure 3.8 shows that

temperature distributions produced by the hexagonal and dodecagonal thermoseed models

are very similar. The dodecagonal thermoseed model is the preferred model because its

shape more closely resembles the shape of a thermoseed in radial cross-section. An

algorithm was incorporated into FEHT to place dodecagonal thermoseed and catheter

models within finite element meshes.

The thermoseed models in this chapter were developed with a symmetrical tissue

model in which the temperature distribution was assumed to be one-dimensional. The

hexagonal and dodecagonal thermoseed models are, however, general in their design.

Thus the numerical thermoseed models can be used in two-dimensional simulations (see

Chapters 6 and 7).
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Chapter 4

Power-versus-Temperature Dependence of
Ferromagnetic Thermoseed

In this chapter, the computational modeling of self-regulating thermoseeds as

finite-sized, thermal sources of constant temperature is compared with modeling

thermoseeds as thermal sources whose power absorption is dependent on temperature.

The theoretical power-versus-temperature dependence of thermoseeds for use in

dimensional and nondimensional tissue models is discussed in Sec. 4.1. Simulations are

performed with dimensional and nondimensional tissue models. Descriptions of the

tissue models are presented in Sec. 4.2. The effects of interseed spacing with uniform

and nonuniform, constant blood flow models and the presence of catheter models on

thernoseed and tissue temperatures are discussed in Sec. 4.3. The effect of varying the

value of a nondimensional variable on thermoseed temperature in the nondimensional

tissue model is presented in Sec. 4.4. Concluding remarks are made in Sec. 4.5.

4.1 Theoretical Power-Temperature Dependence of Thermoseeds

The temperature dependence of thermoseeds is developed in Sec. 4.1.1 for use in

simulations of dimensional tissue models. Later the power-versus-temperature

dependence is nondimensionalized for use in simulations of nondimensional tissue

models (Sec. 4.1.2).
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4.1.1 Power-Temperature Dependence for Use in Dimensional Tissue

Models

Thermoseeds are inductively heated when placed in an electromagnetic field.

Energy from an externally applied electromagnetic field produces eddy currents within a

thermoseed. Lattice vibrations caused by the eddy currents result in heat dissipation and

subsequent warming of the thermoseed. The rate of heat flow from a thermoseed can be

determined from physical properties of the alloy. If the relationship between the

magnetization M [tesla] and the applied magnetic field strength H [A/m] is linear, the

permeability .t [tesla-m/A] of the ferromagnetic material

t+=M+P
H (4.1)

will be constant where p, is the permeability of free space. When the M-H relation is

assumed linear, the heating power per unit length P' of a (infinitely) long cylindrical

thermoseed in the presence of an electromagnetic field applied parallel to the cylinder axis

is given by (Davies and Simpson 1979)

P- tH 2 ber(x) ber'(x) + bei (x) bei'(x)
ber2(x) + bei2(x )  (4.2)

In Eq. 4.2, x is the induction number and equal to a f0o)0/i and is dimensionless; a is

the electrical conductivity of the thermoseed [1/0-m]; a is the thermoseed radius [m]; o is

equal to 2nif[1/sec]; f is the frequency of the magnetic field [Hz]; ber and bei are Kelvin

functions (Abramowitz and Stegun 1964); and ber" and bei" are first derivatives of Kelvin

functions (Abramowitz and Stegun 1964). The electrical conductivity a" and the
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permeability of the ferromagnetic material yi are the only parameters in Eq. 4.2 which can

depend on temperature over the range of temperatures encountered during a hyperthermia

treatment. In the present analysis the electrical conductivity is assumed constant.

By examination of hysteresis curves, Brezovith and Atkinson (1984) showed that

the M-H relation of thermoseeds was nearly linear only at temperatures close to the

maximum temperature of the thermoseed or the Curie point. The M-H relation was,

however, highly nonlinear at lower temperatures. Since a general theory does not exist to

account for this nonlinear behavior, Brezovich and Atkinson (1984) defined an average

permeability,

M(HO)P MHO + yo(4.3)

In Eq. 4.3, H0 is the amplitude of the magnetic field and M(Ho) is the magnetization at

that field intensity. Brezovich and Atkinson (1984) concluded that, since the average

permeability (Ji) given by Eq. 4.3 is constant and that the linear theory only slightly

underestimates the heating power, Eq. 4.3 can be used to evaluate Eq. 4.2 for any desired

thermoseed temperature. Brezovich and Atkinson (1984) showed that the error

introduced by this simplification decreased and became negligible as the Curie point is

reached.

The magnetization as a function of temperature for thermoseeds with an operating

temperature of 48.1 C was measured by Brezovich and Atkinson (1984) and is

reproduced in Fig. 4.1. The heating power versus temperature of the 48.1 C-type

thermoseed (Fig. 4.2) was computed with Eq. 4.2 using the magnetization data of the

48.1 C-type thermoseed in Fig. 4.1. In the calculation of the absorbed power (Eq. 4.2),
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a = 2.57e6 (92-m)-1, H, = 3.98e3 A/m, yo = 10e7 tesla-m/A, f1=90 kHz and a = 0.45

mM.

Since the operating temperature of Ni-Cu thermoseeds can be made different by

altering the mass fraction of Cu, the power-versus-temperature dependence of

thermoseeds with higher operating temperatures of 54.1 and 60.1 C were also computed

0.3
60.1 C-type

"4"
054.1 C-type

. 0.2

g 0.1
"1)

0
0 10 20 30 40 50 60 70

Thermoseed Temperature, Ts (C)

Figure 4.1 Magnetization M(HO) of Ni-Cu self-regulating thermoseeds as a
function of temperature Ts. The curve for the 48.1 C-type thermoseed is reproduced
from data by Brezovich and Atdnson (1984). The magnetizations of the 54.1 C- and
60.1 C-type thermoseeds were assumed to be larger than the magnetization of 48.1 C-
type thermoseeds by a constant 0.054 and 0.134 tesla, respectively, over the
temperature range shown.

with Eq. 4.2 (Fig. 4.2). Since published empirical data on the magnetization versus

temperature of 54.1 C- and 60.1 C-type Ni-Cu thermoseeds are unavailable, the

magnetization of 54.1 C- and 60.1 C-type thermoseeds was assumed to be larger than the

magnetization of 48.1 C-type thermoseeds by a constant 0.054 and 0.134 tesla,
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respectively, over the temperature range shown in Fig. 4.1. With the constants 0.054 and

0.134 tesla, the energy absorption rate per unit length P' (Eq. 4.2) was 10 W/m and the

operating temperature of the thermoseeds was 54.1 and 60.1 C, respectively. In effect,

the assumed magnetization-versus-temperature data of 54.1 C- and 60.1 C-type

thermoseeds shifted the power-versus-temperature curve of the 48.1 C-type thermoseed

to the right (Fig. 4.2). The shift of the power-versus-temperature curve for 54.1 C- and

60.1 C-type thermoseeds is expected, since, for the same absorbed power, thermoseeds

with higher operating temperatures should achieve higher temperatures.

100 . ...10 48.1 C-type 54.1 C-type 60.1 C-type

10

SPowerat -

37 42 47 52 57 62

Thermoseed Temperature, Ts (C)

Figure 4.2 Power per meter length P' absorbed by a self-regulating thermoseed as a
function of temperature Ts. The curves for thermoseeds with operating temperatures of
48.1, 54.1 and 60.1 C were generated using Eq. 4.2. A horizontal reference line at 10
W/m was used to determine the operating temperatures. The Cuire points for 48.1 C-,
54.1 C- and 60.1 C-type Ni-Cu thermoseeds are approximately 53, 57.6 and 62.6 C.
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4.1.1.1 Newton-Raphson Iteration Technique

An s-dimensional Newton-Raphson technique (Shoup 1979), where s is the number

of thermoseeds, was implemented into the finite element model to iteratively determine the

temperature of each thermoseed for the power supplied. It was therefore necessary to

l15

2

H..

Thennoseed Power, P'(W/m)
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S57
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Thermoseed Power, P' (W/m)

(b) 54.1 C

0.1 1 10 100
Thermoseed Power, p' (W/m)

(c) 60.1 C

Figure 4.3 Thermoseed temperature Ts versus power per unit length P' for thermoseeds with operating
temperatures of (a) 48.1 C, (b) 54.1 C and (c) 60.1 C. This figure is a cross-plot of the data in Fig. 4.3.
The circles are data points from Fig. 4.2 and the solid lines are approximations of that data. The Curie
temperature for thermoseeds with operating temperatures of 48.1, 54.1 and 60.1 C are approximately 53,
57.6 and 62.6 C.
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have the thermoseed temperature as a function of its power. A cross-plot of the data

shown in Fig. 4.2 is displayed in Fig. 4.3. Since there is no convenient theoretical

relationship for'thermoseed temperature as a function of its power, the data in Fig. 4.3

were approximated with polynomials. Each approximation in Fig. 4.3 is unique to the

.particular operating temperature of the thermoseed.

In the iteration scheme, the heating power was initialized at P',j (thermoseed s and

iteration j) and then the finite element method was used to compute the temperature of

each thermoseed Ts, j FEHT and the temperature distribution throughout the remaining

simulated tissue region. The temperature Ts, j C.re that each thermoseed would actually

produce at the power P's, j was determined using the temperature-versus-power

relationship of the thermoseed (Fig. 4.3). If the temperature T, jFEHT was different than

Ts, j Curve' then the Newton-Raphson method was used to determine the next value of

P's,j. This procedure was repeated until Ts, j FEHT and TS, j Curve converged. The

convergence criterion was ITs, j FEHT - Ts, j Cure I<Tol. A tolerance of Tol = 5e-3 was

found to be adequate for convergence of the iteration scheme (Sec. 4.3.2.1).

4.1.2 Power-Temperature Dependence for Use in Nondimensional

Tissue Models

Later in this chapter the thermoseed power P' and thermoseed temperature Ts will

be nondimensionalized for studies of a nondimensional tissue model (Sec. 4.2.2). The

nondimensional thermoseed power will be designated as P* and the nondimensional

thermoseed temperature as Ts*.

In order to compare the results from simulations with 48.1 C- and/or 54.1 C-type

thermoseeds with the results from simulations with 60.1 C-type thermoseeds, P* for
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Figure 4.4 Nondimensional power P* of self-regulating thermoseeds as a
function of nondimensional temperature Ts*. The nondimensional power P*
and temperature Ts* are discussed in detail in Sec. 4.2.2. The nondimensional
power at the operating temperature was 0.21 (= 10/P'=).

48.1 C- and 54.1 C-type thermoseeds is determined by dividing P' by P'.ax of the 60.1

C-type seeds. P'.. for 60.1 C-type thermoseeds at 37 C is 47.36 W/m (Fig. 4.2). A

plot of P* versus Ts* for 48.1 C-, 54.1 C- and 60.1 C-type seeds is shown in Fig. 4.4.

Again, since it is necessary to have Ts* as a function of P* for use in the iteration scheme

described in Sec. 4.1.1, a cross-plot of the data in Fig. 4.4 is shown in Fig. 4.5. The

data in Fig. 4.5 were approximated with polynomials.

4.1.2.1 Newton-Raphson Iteration Technique

The s-dimensional Newton-Raphson technique described earlier (Sec. 4.1.1.1)

was implemented into the finite element model to determine the nondimensional

thermoseed temperature for the power supplied. The nondimensional temperature
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Figure 4.5 Nondimensional thermoseed temperature Ts* versus nondimensional thermoseed
power P* for thermoseeds with nondimensional operating temperatures of (a) 0.434, (b) 0.686 and
(c) 0.902. This figure is a cross-plot of the data in Fig. 4.5. The circles are data points from Fig.
4.5 and the solid lines are approximations of that data.

T*sj Curve that each thermoseed would actually produce at the power P*S j was

determined using the temperature-versus-power relationship of the thermoseed (Fig. 4.5).

If the temperature T*s,j FEHT was different than T*s,j Curve, then the Newton-Raphson

method was used to determine the next value of P*s, j. This procedure was repeated until

thermoseed temperatures T's, j FEHIT and T's, j Curve converged. The convergence criterion
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was IT*s, jFEHT - T*sjCurve I < Tol. A tolerance of Tol = 5e-3 was found to be adequate

for convergence of the iteration scheme (Sec. 4.3.2.1).

4.2 Description of Tissue Models

Simulations are performed in a tissue model with known dimensions. Several

thermoseed spacings are studied in the dimensional tissue model. The description of the

dimensional tissue model and the equation used to predict temperatures are given in Sec.

4.2.1. The dimensional tissue model and equations are nondimensionalized in Sec.

4.2.2. The solution to the nondimensional equation provides an opportunity to

understand the influence of changes in one nondimensional variable on thermoseed

temperature rather than changes in several independent variables.

In simulations with the dimensional and nondimensional tissue models, the

numerical dodecagonal thermoseed model (Sec. 3.2.3) and the Newton-Raphson

technique (Secs. 4.1.1.1 and 4.1.2.1) were used to determine thermoseed temperatures.

4.2.1 Dimensional Tissue Model with Heat Transfer in Two-Dimensions

Simulations were performed with a two-dimensional model of a square tissue

model8. The tissue model consisted of a square tumor with an arbitrarily chosen length

of 47 mm (= 2LT) (Fig. 4.6). The simulated tumor was implanted with a square 4x4

array of thermoseeds. The length of the tumor was chosen so that thermoseed spacings I

up to 15 mm in the 4x4 array could be investigated. Since the blood flow in the tumor

8 The two-dimensional model is assumed to be a cross-section near the central plane of the three-
dimensional tissue system and the thermoseeds are 65 mm long. Thus this tissue model satisfies
constraints of two-dimensional models reported previously (Chen et al. 1991, Chin and Stauffer 1991).
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Normal
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Figure 4.6 Two-dimensional cross-section of tissue model. The darkest shaded region
is the simulated tumor core, the medium-shaded region is the tumor periphery with a
length of 2LT and the lightly shaded region is the simulated normal tissue with a length
of 2LN. Thermoseed locations are represented by black circles within the tumor and are
separated by a distance 1. Thermoseeds 1, 2 and 3 are numbered for reference.

periphery can be quite different than that in the tumor core9 , the tumor model was divided

into a square inner core with a length of 24 mm surrounded by an outer periphery. The

tumor core was centered squarely within the tumor model. The normal tissue had an

arbitrarily chosen length of 180 mm (= 2LN). A length of 180 mm for the normal tissue

9Earlier studies and clinical experience have shown that often, the inner core of the tumor is a tough,
fibrous tissue and may have a blood flow that differs vastly from the outer periphery of the tumor. Thus
the tumor was modeled as two distinct regions consisting of an inner core and an outer periphery.

I_. L. 1
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was adequate to ensure that there is no boundary effect due to a temperature gradient at the

outer edge of the normal tissue.

Using geometrical symmetry conditions, only 1/8 of the tissue model in Fig. 4.6

needed to be discretized into a mesh of finite elements (Fig. 4.7). By utilizing these

symmetry conditions, the number of thermoseeds in the problem was reduced from 16 to

3. Finely-graded meshes were used near thermoseeds where large temperature gradients

y4 T(x,LN) = TbM WI 19 - --.

T 1 -0

tI\I/N/Nv\NI\

=0

JNJV

=0

Seedi -

See Fig. 3.5 for thermoseed
boundary conditions.

Seed 3

Figure 4.7 Finite element mesh of normal and tumor tissue model with adiabatic boundaries
(x = 0 and y = x) and a constant-temperature boundary (y = LN). Blackened areas around the
thermoseeds are the result of a finely graded mesh. Thermoseeds are numbered for reference.

/
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can occur. Simulations were performed with thermoseeds centered squarely within the

tumor. The operating temperature of each thermoseed in the array is shown in Table 4.1.

Thermoseed models were spaced uniformly in the x and y directions by a distance 1

between 9 and 15 mm. Thus there was 1 mm between the outer edge of the thermoseed

array and the boundary between the tumor and normal tissues at the maximum thermoseed

spacing ofl= 15 mm.

Table 4.1 Operating Temperature of Thermoseeds in Simulations

Throse Operating Temperature (Fig. 4.2 and 4.3)

Array Thermoseed Number (see Figs. 4.6 and 4.7)
Number 1 2 3

1 48.1 48.1 48.1
2 54.1 54.1 54.1
3 60.1 60.1 60.1

The temperature distribution in the simulated tissue (Fig. 4.7) is determined by

solving Eq. 2.2 with constant thermal conductivity kt. Equation 2.2 with constant kt is

given by

[d2T d2Tl
kt .x2+ ---2 W bCb (T - Tb) = 0 (4.4)

Equation 4.4 is solved with boundary conditions on the perimeter of the simulated tissue.

The adiabatic boundary conditions due to the symmetry of the problem are

dT0
~IX-O =(4.5a)

dr
IY (4.5b)
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The constant temperature boundary condition is given by

T (x,LN) = Tb (4.5c)

As discussed in Sec. 3.2.3, there is a heat flow q' [W/m] condition at the edge of the

simulated thermoseed that is given by

q =P'= g "A3  (4.5d)

Additional assumptions about the geometry and blood flow in the tissue model

include a boundary between tumor and normal tissue that is explicitly known. Thus all

thermoseeds were implanted in the tumor. The outer edge of normal tissue was at body

core temperature Tb. Tissue perfusion wbCb in the tumor and normal tissues was

independent of temperature. Blood flow rates in tumor tissue are typically lower than in

normal tissues (Song et al. 1984). Simulations were therefore performed with blood flow

rates of 0.1, 0.25, 0.5 and 1 /min-kg in normal tissue and 0.1, 0.25 and 0.75 1/min-kg in

the tumor.

In clinical practice, thermoseeds are placed percutaneously into catheters that have

been inserted surgically into tissue to deliver brachytherapy treatments. To study the

necessity of modeling catheters, simulations were performed with an array of

thermoseeds, each within 0.35 mm-thick polyethylene tubing. (The complete description

of the catheter model can be found in Sec. 3.2.3). The thermoseed spacing 1 in these

simulations was 10 mm.
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4.2.1.1 Discretization Study

As with any numerical technique, the accuracy of the predicted temperature

distribution depends on an adequate choice of the finite element mesh. Therefore mesh

sizes with 730, 1530 and 2769 finite elements were used in simulations. The meshes

with 1530 and 2769 finite elements were created by reducing quasi-uniformly the mesh

with 730 elements. The finite element reduction was concentrated near the thermoseed, in

the tumor and in the normal tissue near the boundary of the tumor and normal tissues.

Uniform blood flow rates of m = 0, 0.25, 0.5 and 1 1/min-kg in the tumor and normal

tissue were studied in the simulations.

The effect of reducing the finite element mesh size on thermoseed temperatures is

shown in Table 4.2. Thermoseed temperatures were weakly dependent on mesh size at

blood flow rates of 0 and 0.25 1/min-kg. Thermoseed temperatures were, however,

slightly more dependent on mesh size with blood flow rates of 0.5 and 1 1/min-kg. In

summary, the mesh with 1530 finite elements had sufficient discretization and was used

to predict temperature distributions in the simulations.

Table 4.2 Finite Element Mesh Study
.(4x4ar of bare 54.1 C-type thermoseeds with spacit 12 m

Uniform Blood Number of Thermoseed Temperature, Ts (C)
Flow, m Finite (See Fig. 4.6) % Tumor % Normal
(I/min-kg) Elements Seed 1 Seed 2 Seed 3 > 42 C Tissue>42 C

0 730 56.06 55.49 56.71 100 34.9
0 1530 56.06 55.51 56.70 100 34.8
0 2769 56.05 55.52 56.68 100 34.8

0.25 730 51.65 51.41 51.94 75 0
0.25 1530 51.65 51.41 51.94 75.3 0
0.25 2769 51.65 51.41 51.94 75 0
0.5 730 50.37 50.16 50.52 16.4 0
0.5 1530 50.43 50.31 50.58 16 0
0.5 2769 50.53 50.41 50.68 15.5 0
1 730 49.18 49.04 49.22 7.3 '0
1 1530 49.27 49.23 49.32 • 6.8 0
1 2769 49.39 49.36 49.44 6.8 0
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4.2.2 Nondimensional Tissue Model

The tissue model and equations described in Sec. 4.2.1 can be

nondimensionalized. The rectangular coordinate directions x and y can be

nondimensionalized by defining x * and y * and are given by

* xx (4.6a)

*YY

1 (4.6b)

The distance 1 between the thermoseeds was chosen as an appropriate length scale since 1

is a variable of considerable interest in thermoseed implant arrays. Temperatures can be

normalized by defiming T* which is given by

T* T T
Ts T- b (4.7)

Since the temperatures in the tissue model will never be lower than Tb and never higher

than the Cuire point Ts, c.p. (Sec. 1.5) of the hottest thermoseed, T* will be between 0

and 1.

Substituting Eqs. 4.6 and 4.7 into Eq. 4.4 and dividing Eq. 4.4 by kt gives

d2T* d 2T*
____ + T* BitiT* = 0 (4.8)
Ex*2  *2

The dimensionless parameter Bij appearing in Eq. 4.8 is termed the Implant-Biot number

and is given by
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Bi1  - WbCb 12 kt Rconduction49).kLt. 1 R blood flow

WbCb 1

The Implant-Biot number is the ratio of the resistance to heat flow via thermal conduction

to the resistance of heat flow via blood flow. According to Eq. 4.9 and illustrated in Fig.

4.8, the Implant-Biot number provides a measure of the temperature drop between two

thermoseeds. For small Implant-Biot numbers (Bij <<1), the temperature drop between

thermoseeds is negligible as the resistance to heat flow via blood flow is large. For large

Implant-Biot numbers (Bij >> 1), the temperature decrease between thermoseeds is large

as the resistance to heat flow via blood flow is small.

at T= Ts _ Energy Equation:
........ ............ . ....................... ..

....... ...... .... ............. .....................................................................

Tissue Bunda ryC ondiqu ons:tion : * 1.2
................................... 'B I  -0 0 " l

*0.4Bi =10
x*)

Solution: E 0.2
T--exp [1Bi(x* -1)] +exp (- Bij*) 0

1 +ex(- 'Z/)0 0.2 0.4 0.6 0.8 1
1 + e~ (- ~i 1 )Nondimensional Distance, x*'

(a) Physical Decrption (b) Temperature Distribution

Figure 4.8 Effect of Implant-Biot number on steady-state temperature distribution between between
two thermoseeds. A physical description of the problem set-up and the solution to the energy equation is
shown in part (a) while the nondimensional temperature distribution for Bij = 0.01, 1, and 100 is shown
inpart (b).
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The Implant-Biot number is similar to the classical Biot nmber, Bi, which plays a

fundamental role in conduction heat transfer problems that involve surface convection

effects. The Biot number is given by

L
Bi L k Rconduction(4.10)

k 1 Rconvection
h

and is the ratio of the resistance of heat flow via thermal conduction to the resistance of

heat flow via convection.

The boundary conditions of the dimensional tissue model (Fig. 4.7) given by Eq.

4.5 must be nondimensionalized. The nondimensional boundary conditions can be

shown to be

x*Ix'=0 = 0
dX* (4.1 la)

dT*

dn * Ix 0 (4.1 lb)

T*(x*l LN) = 0
(4.1 1c)

The heat flow condition at the edge of the thermoseed (Eq. 4.5d) is nondimensionalized

by defining P* which is given as

Pmax P Vx Pmax4
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In Eq. 4.1 id, P'm" is the maximum power output of a thermoseed at Tb. The equivalent

fimite element mesh of Fig. 4.7 with nondimensional length and boundary conditions is

shown in Fig. 4.9.

y r~*(x*/,1. =

dgT

dx* x*=o

Seedi

/

F, x *

Figure 4.9 Finite element mesh of nondimensionalized normal and tumor tissue model with adiabatic
boundaries (x* = 0 and y* = x*) and a constant temperature boundary (y* = LNI. Dark-colored areas
around the thermoseeds are the result of a fine mesh. Thermoseeds are numbered for reference.

\I/A I/ /1 /\1/

On* y=x
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Simulations were performed for Implant-Biot numbers Bi1 between 0 and about

15,000. In the simulations, tissue thermal conductivity kt was set to 1 W/m-C and

thermoseed spacing I was set to 10 mm. Thus Implant-Biot numbers Bij were increased

by increasing tissue perfusion wbcb from 0 to 1.5e8 uniformly in the tumor and normal

tissue. The Newton-Raphson technique was used to determine the nondimensional

thermoseed temperature T* as a function of absorbed power P* (Sec. 4.1.2.1). The

mesh with 1530 finite elements had sufficient discretization and was used to predict

temperature distributions in the simulations (Sec. 4.2.1.1).

4.3 Thermoseed and Tissue Temperatures in Dimensional Tissue Models

Thermoseed temperatures were determned in tissue models where the heat transfer

was assumed to be one-dimensional (Sec. 4.3.1) and two-dimensional (Sec. 4.3.2). The

effect of the thermoseed temperatures on tissue temperatures is discussed (Sec.

4.3.2.3.3). The influence of catheter models on thermoseed and tissue temperatures is

presented in Sec. 4.3.3.

4.3.1 Tissue Model with One-Dimensional Heat Transfer

The power-versus-temperature relationship of thermoseeds was used to determine

the temperature of a single thermoseed implanted at the center of a circular tissue model

(Fig. 3.1). The analytically-derived expression for the temperature distribution (Eq. 3.4)

in the circular tissue model and the temperature versus absorbed power of thermoseeds

with operating temperature of 48.1, 54.1 and 60.1 C (see polynomials in Fig. 4.3) were

solved simultaneously to determine thermoseed temperatures. The solutions to the system

of equations were obtained with Engineering Equation Solver (EES) (Klein and Alvarado,
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1989). Thermoseed temperatures were obtained with Eq. 3.4 by setting r = ri, ro ~ oo, kt

= 0.64 W/m-C, a = 0.45 mm and Tb = 37 C.

Thermoseed temperatures were determined for tissue perfusion rates WbCb

between 1 and 105 W/m3 -C (Fig. 4.10) which corresponds to blood flow rates m

between 1.34e-5 and 1.34 1/min-kg assuming Pt = 1080 kg/m3 and Pb = 1060 kg/m3 . At

a tissue perfusion rate of WbCb = 0 W/m3-C, the thermoseed temperature equals the Curie

point (Tc.p.) of the thermoseed. The tissue perfusion rate near wbcb = 1012 W/m3 -C was

the upper limiting value for Wbcb, because at this perfusion rate, the thermoseed

temperature was equal to the blood temperature Tb.

62 60.1 C-type
~(62.6 Curie temperature)

U 57

- 52

47 - 54.1 C-type

(57.6 C Curie temperature)~Normal

42 42 physiologic42 48.1 C-type range-)I

(53 C Curie temperature)
37 1 1 L II, .

1 10 100 1000 104 105

Tissue Perfusion, wb q, (W/m3-C)

Figure 4.10 Thermoseed temperature Ts versus tissue perfusion WbCb for a
thermoseed with operating temperatures of 48.1, 54.1 and 60.1 C. The curves were
obtained by solving Eq. 3.4 and the thermoseed temperature-power relationship (Ts
versus P' in Fig. 4.3) simultaneously. The simulations were performed on the tissue
model in Fig. 3.1 where ro -*, r = ri, kt = 0.64 W/m-C, a = 0.45 mm and Tb = 37 C.
Tissue perfusion in the normal physiologic range is between 2000 and 75,000 W/m3-C,
which corresponds to blood flows m between 0.027 and 1 l/min-kg.
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For a single thermoseed placed at the center of the circular tissue model, the

temperature of 48.1 C-type thermoseeds drops 26.9% between tissue perfusion rates of 1

and 105 W/m3-C. Similarly, the temperature of 54.1 C- and 60.1 C-type thermoseeds

drops about 25% between tissue perfusion rates of 1 and 105 W/m 3-C. Thus it is

probable that estimates of thermoseed temperature will be more accurate than assuming a

constant temperature model, if the power-temperature relationships of thermoseeds are

used to determine thermoseed temperature.

4.3.2 Tissue Model with Two-Dimensional Heat Transfer

The convergence of the Newton-Raphson scheme is discussed in Sec. 4.3.2.1

and the effect of interseed spacing on thermoseed temperatures with uniform blood flow

models is presented in Sec. 4.3.2.2.

4.3.2.1 Convergence Criteria

Simulations were performed to determine the sensitivity of the tolerance (Tol)

value in the Newton-Raphson scheme discussed in Sec. 4.1.1.1. The simulations were

conducted with an array of bare, 60.1 C-type thermoseeds with interseed spacing 1 = 10

mm in the compartmentalized blood flow model (mt, core = 0.1 1/min-kg mt, periphery =

0.75 1/min-kg and m, = 0.5 I/min-kg). The results of these simulations are shown in

Table 4.3. A satisfactory tolerance for convergence of the Newton-Raphson scheme was

Tol = 5e-3. With a Tol = 5e-3, the difference in thermoseed temperatures ITs, jFEHT -T,

j Cvef was less than 0.01 C.

The time required to determine thermoseed temperatures was reduced significantly

by replacing the Newton-Raphson method with the variable-property routine in FEHT

(Klein et al. 1988). By using the temperature-dependent generation (ge"' = P'/AS) rou-
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Table 4.3 Convergence of the Newton-Raphson iteration scheme.
(Calculations were performed on a Macintosh Ilci.)

Thermoseed Temperatures, Ts (C)
Tolerance No. of Calculation Seed 1 Seed 2 Seed 3

(Tol) Iterations Time (min) FEHT Curve* FEHT Curve* FEHT Curve*
5e-1 4 25 55.59 55.52 54.78 54.6 58.37 5-8.39
5e-2 5 28 55.59 55.58 54.76 54.75 58.37 58.38
5 e -3 6 3 55 955.5 955 4 .

*See Fig. 4.3c.

tine in FEHT for each of the three thermoseeds in Fig. 4.7, only nine minutes were

needed for convergence of the variable-property iteration scheme. Thus a reduction in the

computation time by about a factor of 4 was achieved. Nine iterations of the variable-

property routine were required and seed temperatures were identical to those in Table 4.3.

4.3.2.2 Effect of Interseed Spacing with Uniform Blood Flow Models

Temperatures predicted by FEHT for a uniformly spaced, 4x4 array of

ferromagnetic thermoseeds with operating temperatures of 48.1, 54.1 and 60.1 C are

plotted in Fig. 4.11 as a function of thermoseed spacing in the absence of blood flow.

These simulations were performed to determine thermoseed temperatures in a purely

conductive medium. Temperatures of 48.1 C-type thermoseeds were from 2.6 C (seed 2,

l = 15 mm) to 4 C (seed 3, 1 = 9 mm) higher than the operating temperature and from 1.4

C (seed 3, l = 9 mm) to 2.8 C (seed 2, l= 15 mm) below the 53 C Curie temperature.

Temperatures of 54.1 C-type thermoseeds were from 1.2 C (seed 2,1= 15 mm) to 2.7 C

(seed 3, 1=9 mm) higher than the operating temperature. Temperatures of 60.1 C-type
thermoseeds were from 0.16 C (seed 2, l = 15 mm) tO 1.8 C (seed 3, 1 = 9 mm) higher

than the operating temperature.
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Figure 4.11 Effect of interseed spacing 1 on thermoseed temperatures Ts for a square, 4x4
array of thermoseeds with operating temperatures of 48.1 C (solid lines), 54.1 C (short
dashed lines) and 60.1 C (long dashed lines). The simulations were performed with a tissue
model in the absence of blood flow. For locations of seeds 1, 2 and 3 refer to Fig. 4.7.

Temperatures of all three types of thermoseeds were weakly dependent on

interseed spacing, decreasing no more than 0.4 C (seed 2) between I = 9 and 15 mm.

Thermoseed 3 is closest to the center of the thermoseed array (Fig. 4.7) and achieved the

highest temperatures resulting in the least power absorption, while thermoseed 2 is

furthest and thus at the lowest temperature and had the highest power absorption. This

prediction was consistent for interseed spacings between 1 =9 and 15 mm.
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Thermoseed temperatures are plotted in Fig. 4.12 for all three types of

thermoseeds in tissue with a uniform blood flow rate of m = 0.25 1/min-kg.

Temperatures of 48.1 C-type thermoseeds ranged from 0.3 C (seed 3, 1 = 9 mm) to 1.6 C

(seed 2, 1 = 15 mm) below the operating temperature. Temperatures of 54.1 C-type

thermoseeds varied from 1.4 C (seed 3, 1= 9 mm) to 3 C (seed 2, 1= 15 mm) below the

operating temperature while temperatures of 60.1 C-type thermoseeds ranged from 2.3 C

(seed 3, 1= 9 mm) to 4.2 C (seed 2, 1= 15 mm) below the operating temperature. With a

10 mm spacing between 48.1 C-type thermoseeds, a uniform blood flow rate of m = 0.25

1/min-kg lowered the temperature of thermoseeds 1, 2 and 3 by 4.3, 4.1 and 4.6 C,

respectively, below the temperature of thermoseeds in a purely conductive medium

(compare temperatures at points a, b and c in Figs. 4.11 and 4.12). For similar blood

flow rates, the temperatures of 54.1 C-type thermoseeds 1, 2 and 3 decreased by 4.2, 4.0

and 4.4 C, respectively (compare temperatures at points d, e andf in Figs. 4.11 and

4.12). Likewise, temperatures of 60.1 C-type thermoseeds 1, 2 and 3 decreased by 4.3,

4.1 and 4.5 C, respectively (compare temperatures at points g, h and i in Figs. 4.11 and

4.12) As with thermoseeds in a purely conductive medium, the temperature of

thermoseed 2 in tissue with a blood flow rate of 0.25 I/min-kg was lower than the

temperature of thermoseeds 1 and 3 which were closer to the center of the thermoseed

array.
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Figure 4.12 Effect of interseed spacing on thermoseed temperatures with a uniform
blood flow model (m = 0.25 I/min-kg) and a square, 4x4 array of thermoseeds with
operating temperatures of 48.1 C (solid lines), 54.1 C (short dashed lines) and 60.1 C (long
dashed lines). For locations of seeds 1, 2 and 3 refer to Fig. 4.7.

4.3.2.3 Effect of Interseed Spacing with a Nonuniform Blood Flow

Model

The differences between thermoseed temperature and the operating temperatures

of 48.1, 54.1 and 60.1 C were largest for thermoseed 2 than for thermoseeds 1 and 3

(recall Figs. 4.11 and 4.12). Thus the discussion in Sees. 4.3.2.3.1 and 4.3.2.3.2 will

be limited to thermoseed 2.
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4.3.2.3.1 Uniformly-varying Blood Flow in Normal Tissue

The effect of blood flow in normal tissue on the temperature of thermoseed 2 is

shown in Fig. 4.13 for all three types of thermoseed arrays. There was a 0.3 C

temperature drop in thermoseed 2 as normal tissue blood flow increased by an order-of-

magnitude in simulations with all three types of arrays, 1= 10 mm spacing and with tumor

blood flow of mt = 0.1 1/min-kg. The temperature of thermoseed 2 dropped by 1.4, 1.8

and 2.1 C in simulations with arrays of 48.1 C-, 54.1 C- and 60.1 C-type thermoseeds,

62
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46 ,1i i ... . i i --- 7 .-J
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Figure 4.13 Effect of blood flow in normal tissue on the temperature of thermoseed 2 (Fig.
4.7) in a 4x4 array of thermoseeds with operating temperatures of 48.1 C (solid lines), 54.1 C
(short dashed lines) and 60.1 C (long dashed lines). The simulations were performed with tumor
blood flow of mt = 0.1 /min-kg and normal tissue blood flow mn [1/min-kg] as labelled in the
figure.
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respectively, with an interseed spacing of I = 15 mm. The larger decreases in the

temperature of thermoseed 2 with wider interseed spacing versus narrow interseed

spacing is due-to the closer proximity of thermoseed 2 to the boundary of the tumor and

normal tissue.

4.3.2.3.2 Uniformly-varying Blood Flow in Tumor

The effect of tumor blood flow on the temperature of thermoseed 2 is shown in

Fig. 4.14 for all three types of arrays with a blood flow in normal tissue of m,,= 0.25

62 1 1
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Figure 4.14 Effect of tumor blood flow on the temperature of thernoseed 2 (Fig. 4.7) in a 4x4
array of thermoseeds with operating temperatures of 48.1 C (solid lines), 54.1 C (short dashed
lines) and 60.1 C (long dashed lines). The simulations were performed with blood flow in normal
tissue of mn = 0.25 l/min-kg and tumor blood flow mt [l/min-kg] as labelled in the figure.
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1/min-kg. In simulations with all types of arrays and with seed spacing of 10 mm, the

temperatures of thermoseed 2 in tumor blood flow of mt = 0.25 1/min-kg was

approximately 1 C lower than the temperatures predicted with a tumor blood flow of mt =

0:1 1/min-kg. The temperature of seed 2, over the same decrease in tumor blood flow

from mt= 0.25 to 0.1 1/min-kg, decreased by about 0.4 C with a seed spacing of I1= 15

mm.

4.3.2.3.3 Effect of Compartmentalized Tumor Blood Flow Model

Thermoseed temperatures are plotted in Fig. 4.15 for all three types of thermoseed

60
60.1 C operating temperature Seed 3

Seed2 - .
SeedSe

48 54.1 C operating temperature

52 Seed 1edI. . . . . . .

oSeed 3
48--' 48.1 C operating temperature _

Seed1

44 Seed2 , p I

9 10 11 12 13 14 15

Thermoseed Spacing, I (mm)
Figure 4.15 Effect of interseed spacing on thermoseed temperatures with the two-compartment
tumor blood flow model (rot, core = 0.1 1/min-kg, mr, periphery = 0.75 1/min-kg, mn-= 0.5 1/min-
kg) and a square, 4x4 array of thermoseedls with operating temperatures of 48.1 C (solid lines),
54.1 C (short dashed lines) and 60.1 C (long dashed lines). For locations of seeds 1, 2 and 3 refer
to Fig. 4.7.
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arrays (Table 4.1) in simulations with blood flow in the tumor core of mt, core = 0.1 /min-

kg, tumor periphery of mg, periphery = 0.75 I/min-kg, and normal tissue of m, = 0.5 1/min-

kg. Temperatures of all three thermoseeds dropped with increasing spacing due to the

decreased heating effect that thermoseeds have on each other with wider spacings.

Temperatures of thermoseeds 1 and 2 dropped between one and two degrees over seed

spacings between 9 and 13 mm, while the temperature of thermoseed 3 continued to

decrease beyond 1= 13 mm.

So far discussion in Sec. 4.3 has been limited to the influence of blood flow on

thermoseed temperatures. The influence on tissue temperatures is, however, the primary

concern. In other words, what effect does using thermoseed temperatures determined

with the power-versus-temperature relationship compared with the constant-temperature

thermoseed modeling assumption have on tissue temperatures? Fractions of tumor greater

than 43 C were determined with three types of simulations (Fig. 4.16). In the first type

of simulation, thermoseed temperatures were determined with the power-versus-

temperature relationship (Fig. 4.2). In the second type, the operating temperatures of the

thermoseeds were used as constant-temperature modeling assumptions. Similarly, the

third type of simulation used Curie temperatures as constant-temperature, modeling

assumptions. Fractions of tumor greater than 43 C in simulations with an array 48.1 C-

type were between 16 and 45% lower over all thermoseed spacings when the power-

versus-temperature relationship was used to determine thermoseed temperature than when

the operating temperature was used as the constant-temperature modeling assumption

(Fig. 4.16a). Similarly, tumor fractions greater than 43 C in simulations with 54.1 C-

and 60.1 C-type thermoseeds, were between 10 and 50% and between 8 and 40 % lower,

respectively, over all i's when the power-versus-temperature relationship was used to

determine thermoseed temperature than when the operating temperature was used (Figs.
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4.16b and 4.16c). Isotherms from a simulation with an array of 60.1 C-type thermoseeds

separated by 12 mm also reveal that smaller fractions of tumor are above 43 C (Fig.

4.17). The results from these simulations show that using the Cuire and operating

1
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Figure 4.16 Fraction of tumor above 43 C versus thermoseed spacing from simulations with arrays of
(a) 48.1 C-, (b) 54.1 C- and (c) 60.1 C-type thermoseeds. Simulations were performed where thermoseed
temperatures were determined using the power-versus-temperature relationship and using the operating and
Curie temperatures as constant-temperature modeling assumptions of thermoseeds. Simulations were
performed with the two-compartment tumor blood flow model (mt, core = 0.1 I/min-kg, mg, periphery =
0.75 I/min-kg, mn = 0.5 I/min-kg).
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45C

47C

(a) Curie-temperature assumption (b) Operating-temperature assumption

(c) Power-temperature relationship

Figure 4.17 The 43, 45 and 47 C isotherms from simulations with an array of 60.1 C-type
th'ermoseeds and seed spacing 1= 12 mm. Blood flow was mr, core = 0.1 I/min-kg, mtperiphery = 0.75
/min-kg and mn = 0.5 I/min-kg. Thermoseed temperatures were (a) equal to the Curie temperature of
62.6 C, (b) equal to the operating temperature of 60.1 C, and (c) determined with the power-versus-
temperature relationship (Fig. 4.2).

temperatures as constant-temperature modeling assumptions significantly over-estimates

the fraction of tumor greater than 43 C versus that when the power-temperature

relationship is used.
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4.3.3 Effect of Catheter Model

The temperatures of thermoseed 2 versus normal tissue blood flow in simulations

with tumor blood flow rates of mt = 0.1 and 0.25 /min-kg in a configuration of bare 48.1

C-type thermoseeds are compared with those in which thermoseed and catheter models

(Sec. 3.2.3) were used (Fig. 4.18). Interseed spacing in these simulations was 1 = 10

mm. The temperature of thermoseed 2 in simulations with mt = 0.1 1/min-kg and with

thermoseeds placed inside catheters was 0.4 C higher than in simulations with bare

thermoseeds. The 0.4 C increase in the temperature of thermoseed 2 was uniform over

normal tissue blood flow rates between m, = 0.1 and 1 1/min-kg (solid lines in Fig.

4.18). Similarly, the temperature of thermoseed 2 in simulations with tumor blood flow

49 Thnoseed
within interstitial

catheter sleeve

E48S48 8 .1 C operating temperature

2 Bare

S47 f
0

within interstitial B=eseed
catheter sleeve

46 .1 , 1,1 1-,II., I ,
0 0.2 0.4 0.6 0.8 1

Normal Tissue Blood Flow, mn (I/min-kg)

Figure 4.18 Effect of catheter on temperature of thermoseed 2 (Fig. 4.7) as a
function of normal tissue blood flow m for tumor blood flows of mt - 0.1
l/mmi-kg (solid lines) and 0.25 l/min~kg (dashed lines). Simulations were
performed with 48.1 C-type thermoseeds with an interseed spacing of / = 10
mm. Catheter wall thickness was 0.35 mam.
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of mt = 0.25 /min-kg was 0.5 C higher in simulations with thermoseeds inside catheters

versus simulations with bare thermoseeds. The 0.5 C increase was uniform over normal

tissue blood flow rates between m = 0.25 and 1 1/min-kg (see dashed curves in Fig.

4.18).

Simulations were performed with all three types of thermoseed arrays in which

thermoseeds and catheter sleeves were modeled. The simulations were performed with a

spacing of!l = 10 mm and with several blood flow models. The drop in temperature from

the inner wall to the outer wall of the catheter for all thermoseeds are shown in Table 4.4.

Temperatures through the catheter wall surrounding 48.1 C-type thermoseeds decreased

by 1.7 to 3.4 C over all blood flow models studied (Table 4.4a). The temperature drops

are larger with higher temperature thermoseeds. Temperatures through the catheter wall

surrounding 54.1 C-type thermoseeds decreased by 2.3 to 5.0 C (Table 4.4b), while

temperatures through catheter walls surrounding 60.1 C-type thermoseeds dropped by

3.2 to 6.8 C (Table 4.4c). The temperature drop through the catheter wall was due to the

thickness and thermal conductivity of the catheter and absence of blood flow. Because of

the temperature drop through the catheters, the fraction of tumor greater than 42 C for all

three types of thermoseed arrays in simulations with thermoseed and catheter models

were between 1 and 45.3% lower over all blood flow models studied than in simulations

with bare thermoseeds (Table 4.5). In summary, because of the modest to dramatic

temperature drops through catheter walls and the smaller fractions of tumor above 42 C

for thermoseeds within catheter models versus bare thermoseeds, more realistic

temperature distributions will be obtained if catheter models are included in computer

simulations.
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Table 4A Average Temperaue Drop Through Catheter Wall
Simulations were performed with arrays of thermoseeds spaced 1= 10 mm apart.

a. 48.1 C-type thermoseeds

Blood flow (1/min-kg) Temperature Drop Through Catheter Wall (C)
Tumor, mt Normal, mn Catheter 1 Catheter 2 Catheter 3

0.1 0.1 2.1 2.3 1.8
0.1 0.25 2.1 2.3 1.7
0.1 0.5 2.1 2.3 1.8
0.1 1 2.1 2.3 1.8

0.25 0.25 2.8 2.9 2.5
0.25 0.5 2.8 2.9 2.5
0.25 1 2.7 2.9 2.5

0.1 (c); 0.75 (p) 0.5 3.2 3.4 2.3

b. 54.1 C-type thermoseeds

Blood flow (I/min-kg) Temperature Drop Through Catheter Wall (C)
Tumor, mt Normal, mn Catheter 1 Catheter 2 Catheter 3

0.1 0.1 2.9 3.4 2.3
0.1 0.25 3.1 3.5 2.5
0.1 0.5 3.1 3.5 2.6
0.1 1 3.2 3.5 2.5

0.25 0.25 4.1 4.2 3.8
0.25 0.5 4.0 4.3 3.7
0.25 1 4.0 4.2 3.7

0.1 (c); 0.75 (p) 0.5 4.8 5.0 3.2

c. 60.1 C-type thermoseeds

Blood flow (1/min-kg) Temperature Drop Through Catheter Wall (C)
Tumor, mt Normal, mn Catheter I Catheter 2 Catheter 3

0.1 0.1 4.0 4.4 3.2
0.1 0.25 4.0 4.6 3.2
0.1 0.5 4.1 4.7 3.3
0.1 1 4.1 4.8 3.3

0.25 0. .25 "5.4 5.7 ... 5.0
0.25 0.5 5.4 5.7 5.0
0.25 15.5 5.8 5.0

0.1 (c); 0.75 (p) 0.5 6.5 6.8 4.3
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Table 4.5 Fraction of Tumor Above 42 C
Simulations were performed with arrays of thermoseeds spaced 1= 10 mm apart.

a. 48.1 C-type hermoseeds

Blood flow (1/min-kg) Fraction of Tumor > 42 C
Tumor, mt Normal, mn w/o Catheter w/ Catheter Difference (%)

0.1 0.1 0.68 0.64 5.8
0.1 0.25 0.64 0.60 5.6
0.1 0.5 0.62 0.59 5.5
0.1 1 0.60 0.57 5.5

0.25 0.25 0.35 0.19 44.6
0.25 0.5 0.34 0.19 44.9
0.25 1 0.33 0.18 45.3

0.1 (c); 0.75 (p) 0.5 0.24 0.18 24.6

b. 54.1 C-type thermoseeds

Blood flow (1/min-kg) Fraction of Tumor > 42 C
Tumor, mt Normal, mn w/o'Catheter w/ Catheter Difference (%)

0.1 0.1 0.88 0.83 5.1
0.1 0.25 0.80 0.76 5.4
0.1 0.5 0.76 0.73 4.3
0.1 1 0.73 0.70 4.6

0.25 0.25 0.62 0.58 6.5
0.25 0.5 0.61 0.58 4.9
0.25 1 0.61 0.57 6.6

0.1 (c); 0.75 (p) 0.5 0.41 0.37 9.8

c. 60.1 C-type thermoseeds

Blood flow (I/min-kg) Fraction of Tumor > 42 C
Tumor, mt Normal, mn w/o Catheter w/ Catheter Difference (%)

o.1 0.1 0.96 0.95 1.0
0.1 0.25 0.92 0.89 3.3
0.1 0.5 0.87 0.84 3.4
0.1 1 0.82 0.80 2.4

0.25 0.25 0.73 0.69 5.5
0.25 0.5 0.71 0.68 4.2
0.25 1 0.70 0.67 4.3

0.1 (c); 0.75 (p) 0.5 0.53 0.49 7.5
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4.4 Thermoseed Temperature in Nondimensional Tissue Model

The nondimensional temperature T* of thermoseeds 1, 2 and 3 as a function of the

Implant-Biot number Bij are illustrated in Fig. 4.19. The maximum nondimensional

thermoseed temperatures are near the Curie temperature of each thermoseed and occurred

with a Bi 0~O. The minimum thermoseed temperature Ts* was - 0 (ie., T, ~ Tb) and

occurred with a Bij of approximately 15,000. As in the results from the dimensional

tissue model (Sec. 4.3.2), nondimensional thermoseed temperatures are lower for

thermoseeds further from the center of the thermoseed array.

The decrease in the temperature of thermoseeds 1, 2 and 3 for Implant-Biot

numbers Bi1 between 0 and 7 are in Table 4.6. The change in Bi1 from 0 to 7 corresponds

to a change in blood flow from m = 0 to 1 1/min-kg for kt = 1 W/m-C and 1= 10 mm. The

temperature of thermoseeds with higher operating temperatures decreased more than that

with lower operating temperature thermoseeds.

The Implant-Biot number is proportional to tissue perfusion wbCb, to the square of

thermoseed spacing 1 and inversely proportional to tissue thermal conductivity kt (recall

Eq. 4.9). Thus thermoseed temperature will decrease with increasing thermoseed

separation, increasing blood flow and decreasing tissue thermal conductivity. Since Bii is

proportional to the square of thermoseed spacing, changes in thermoseed spacing will

have a larger influence on thermoseed temperature than the for the same change in blood

flow rate. The effects of increasing blood flow, thermoseed spacing and the operating

temperature by a factor of 1.5410 are in Table 4.7. Increasing tissue perfusion from 2009

to 3094 W/m3-C decreased thermoseed temperatures by approximately 0.6 to 0.9 C for all

10A factor of 1.54 was used since the nondimensional operating temperature of the 0.668-type thermnoseed
is 1.54 times greater than the 0.434-typesed
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Table 4.6 Nondimensional Temperature Drop of Thennoseeds for
Implant-Biot numbers Bil between 0 and 7

Thenmoseed Nondimcnsional Thrimoseed Temperature Drop

Type in Array Seed 1 Seed 2* Seed 3*

0.434 0.33 0.31 0.36
0.668 0.43 0.41 0.46

0.902 0.56 0.53 0.59
*See Fig. 4.9 for seed location.

three thermoseed types. Increasing thermoseed spacing from 10 to 15.4 mm decreased

thermoseed temperatures by 1.3 to 2 C. Thus thermoseed temperatures were reduced by

about twice the amount for increasing thermoseed spacing versus the same increase in

tissue perfusion. An increase in the operating temperature of thermoseeds from 0.434 to

0.668, increased the temperature of thermoseeds 1, 2 and 3 by 4.8, 4.6 and 4.9 C,

respectively, at a seed spacing of I1= 10 mm and perfusion of WbCb = 2009 W/m3-C.

Table 4.7 Effect of Spacing, Tissue Perfusion, and Thermoseed Operating
Temperature on Thermoseed Tempeature

(Thermoseed temperatures Ts (C) are shown in parentheses.)
Thermoseed Spacing, 1 (mm) = 10 10 15.4

Perfusion, WbCb (W/m3-C)= 2009 3094 2009
Thermoseed Implant-Biot No., Bij

Array Type 0.2 0.31 0.48

0.434-type (48.1 C-type) Seed 1: 0.422 (47.8) 0.397 (47.2) 0.370 (46.5)

Seed 2: 0.389 (47.0) 0.365 (46.3) 0.339 (45.7)

Seed 3: 0.459 (48.8) 0.434 (48.1) 0.406 (47.4)

0.668-type (54.1 C-type)
Seed 1: 0.609 (52.6) 0.583 (51.9) 0.549 (51.1)

Seed 2: 0.570 (51.6) 0.540 (50.8) 0.504 (49.9)

Seed 3: 0.651 (53.7) 0.628 (53.1) 0.597 (52.3)

0.902-type (60.1 C-type)

Seed 1: 0.808 (57.7) 0.775 (56.8) 0.734 (55.8)

Seed 2: 0.759 (56.4) 0.723 (55.5) 0.678 (54.4)

Seed 3: 0.861 (59.0) 0.830 (58.2) 0.793 (57.3)
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4.5 Conclusion

Figure 4.16 illustrates that fractions of tumor greater than 43 C are smaller in

simulations when thermoseed temperatures depend on power versus models which

assume a constant thermoseed temperature such as the Curie or operating temperature.

Fractions of tumor greater than 43 C are between 8 and 40% lower when thermoseed

temperatures depend on power versus models which assume a constant temperature equal

to the operating temperature. Fractions of tumor greater than 43 C are even larger than

those achieved with the constant operating-temperature assumption if the Curie

temperature is used as the assumed constant temperature.

It has been stated that little change in thermoseed temperature occurs for variations

in tissue cooling rates within an array of thermoseeds (Stauffer 1990). Results from the

simulations in this chapter should help to quantify the conclusion made by Stauffer

(1990). In all simulations, the temperature of thermoseeds furthest from the center of the

thermoseed array absorbed more power and were at lower temperatures than thermoseeds

located closer to the center of the array. In simulations with all three types of arrays and

where the seed spacing was 10 mm and the tumor blood flow was 0.1 1/min-kg, the

temperature of thermoseeds located furthest from the center of the array dropped by 0.3 C

as normal tissue blood flow increased by an order-of-magnitude from 0.1 to 1 I/min-kg

(Fig. 4.13). The temperature of these thermoseeds dropped by 1.4, 1.8 and 2.1 C in

simulations with arrays of 48.1 C-, 54.1 C- and 60.1 C-type thermoseeds, respectively,

with an interseed spacing of 15 mm. In simulations with all three types of arrays and

with seed spacing of 10 mm, the temperature of the furthest thermoseed in a tumor with

blood flow of 0.25 1/min-kg was approximately 1 C lower than the temperature predicted

with a tumor blood flow of 0.1 /min-kg. The temperature of the furthest thermoseed,
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over the same decrease in tumor blood flow from 0.25 to 0.1 1/min-kg, decreased by

about 0.4 C with a seed spacing of 15 mm.

In a theoretical study with constant temperature thermoseeds the periphery of tissue

outside the thermoseed array did not heat as well as tissue between thermoseeds

(Mechling and Strohbehn 1986). The study by Mechling and Strohbehn (1986) suggests

that the periphery of a thermoseed array may be a likely site for placing thermoseeds with

higher operating temperatures. Stauffer (1990) has made a similar suggestion. Results

from the present study, where the power-versus-temperature dependence of thermoseeds

was used in modeling thermoseeds, revealed that thermoseeds furthest from the center of

the thermoseed array were cooler than thermoseeds closer to the center of the array (Fig's.

4.11 and 4.12). The lower temperature thermoseeds near the periphery of the tumor

supports the conclusion that the tumor periphery is a likely site for thermoseeds with

higher temperatures.

It has been shown that catheters can affect temperature fields in the tissue and,

therefore, should be considered explicitly in simulations (Haider et al. 1991). The

temperature of 48.1 C-type thermoseeds were approximately 0.5 C higher in simulations

with thermoseeds inside catheter models versus simulations with bare thermoseeds (Fig.

4.18). Thus the modeling of catheters around thermoseeds was shown to decrease the

absorbed power of thermoseeds and increase their temperature versus modeling

thermoseeds without catheters. Seed temperatures were higher for thermoseeds within

catheters than bare thermoseeds because the cooling effect of blood flow was absent at the

surface of thermoseeds inside catheter sleeves. The drops in temperature through the

catheter walls were significant. The temperatures at the outer surface of catheters were

between 1.7 and 6.8 C below the temperatures at the inner surface over a wide range of

blood flow models and thermoseed types (Table 4.4). Because of the temperature drop
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through the catheters, the fraction of tumor greater than 42 C in simulations using

thermoseed and catheter models were between 1 and 45.3% lower over all blood flow

models and thermoseed array types studied than in simulations with bare thermoseeds. In

smmary, because of the modest to dramatic temperature drops through catheter walls and

the smaller fractions of tumor above 42 C in simulations with thermoseed and catheter

models versus bare thermoseed models (i.e., without catheter models), more realistic

temperature distributions will be obtained if catheter models are included in computer

simulations.

It was shown with simulations that increasing thermoseed spacing caused twice

the drop in thermoseed temperature than for the same increase in tissue perfusion (Sec.

4.4). In conclusion, when considering ferromagnetic hyperthermia variables that affect

treatment planning such as blood flow, thermoseed spacing and thermoseed operating (or

Curie) temperatures, changes in thermoseed spacing have a greater effect on thermoseed

temperature than for the same relative change in tissue perfusion. It was also shown that

thermoseeds with higher Curie points of the same relative increase in operating

temperature can more than off-set the drop in thermoseed temperature resulting from

increased seed spacing or higher blood flow rates.
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Chapter 5

Physiologically-Based Objective Function

The objective function is a mathematical formulation of hyperthermia treatment

goals. This chapter discusses the physiological basis that was used to formulate the

objective function (Sec. 5.1). The formulation of the objective function is presented in

Sec. 5.2. In Sec. 5.3, numerically computed objective functions are compared to

analytically computed values for simple tissue geometries. Some concluding remarks are

made in Sec. 5.4.

5.1 Hyperthermia Treatment Goals

There are at least two concerns with transferring laboratory-generated biological

hyperthermia data to the clinic. This first concern is, how well do cell-survival data from

laboratory experiments with assays of neoplasms predict the survival of human tumors?

The answer to this question is the subject of much research. Clearly all the physiological

conditions of a human neoplasm including the aerobic state, pH level, and nutrient supply

cannot be simulated identically in the laboratory. The physiological conditions can differ

from tumor to tumor and from location to location within the same neoplasm. The

conditions also vary temporally (with time).

The second concern is, which temperature descriptor within the tumor determines

the survival of the tumor? This broad concern of dose is more acute for hyperthermia
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than for radiation, since temperature distributions are inhomogeneous for hyperthermia

and suffer from temporal variations due to changes in blood flow rates. Tumor cure

might be expected to correlate best with minimum temperatures within the target volume,

since clonogens surviving in any region of lower temperature may be a site for regrowth

of the tumor. Research has shown that a hyperthermia treatment is successful if the

steady-state temperatures throughout the tumor are at or above a minimum temperature

(Dewhirst et al. 1984, Van Der Zee et al. 1986). Other research has suggested that

stronger predictors of histopathological outcome are T90 and T50 temperature descriptors

(Leopold et al. 1992). The T90 and T50 are the temperatures at which 90% and 50%,

- respectively, of all measured temperatures are at or above.

The energy required for inactivation (or death) of mammalian cells in culture

supports the theory that maintaining tumor temperatures above a minimum is the preferred

treatment goal. A plot of the reciprocal of the slope in the exponential region of cell-

survival curves versus the reciprocal of the absolute temperature (an Arrhenius plot) has

shown that a significant change in slope occurs between 42 and 43 C (Dewey et al.

1977a). In other words, it is believed that the differences in inactivation energy above

and below this temperature range may reflect different mechanisms of cell killing (Hall

1988).

In the hyperthermia clinic at the University of Wisconsin, treatments are given

locally to tumors (usually 3 to 20 cm3) with either an external microwave applicator or an

array of ferromagnetic thermoseeds within interstitial catheter sleeves. When

hyperthermia is delivered with the external microwave applicator, the treatment goal is to

maintain the maximum measured tumor temperature at or near 43 C for 1 hour. In

practice, however, the measured tumor temperatures that are achieved and maintained are

influenced by the patient's tolerance of temperature. Sometimes maximum measured
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tumor temperatures can be 1 or 2 C above or below 43 C. Tumor temperatures are

measured within one or two catheters which are placed surgically into the tumor prior to

the initial treatment. Tumor temperatures can be raised or lowered by adjusting applicator

power, the position of the applicator and the amount of surface cooling provided by a

water bolus. When hyperthermia is given with an array of ferromagnetic thermoseeds,

the treatment goal is also to maintain the maximum measured tumor temperature close to

43 C for 1 hour.

5.2 Objective Function

The proposed objective function has a physiological basis which is based on cell-

survival data. Discussion of the physiological basis and the cell-survival curves are

presented in Secs. 5.2.1 and 5.2.2, respectively. The formulation of the objective

function is presented in Sec. 5.2.3.

5.2.1 Physiological Basis

An objective function is a mathematical equation. In hyperthermia applications,

objective functions are formulated so that when the objective function is maximized, a set

of treatment variables is optimized. Within the limits of the model, the set of optimized

treatment variables will deliver the best heat treatment. (Conversely, it is possible to

formulate the objective function so that its minimum optimizes the treatment variables.)

Objective functions that seek to optimize temperature distributions in tumor and normal

tissues by selecting the best set of variables for delivering hyperthermia with ultrasound

from a scanned focussed system have been mentioned (Sec. 1.6.1).

The proposed objective function utilizes cell-survival data where increased cell

killing is achieved with temperatures above 42 to 43 C. It is known that heat kills cells in
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culture in a predictable and repeatable manner (Dewey et al. 1977a). Moreover, higher

temperatures kill more cells in culture than lower temperatures for the same heating

period. If the goal of a hyperthermia treatment is to maximize tumor cell death and/or

minimize normal cell destruction, use of cell-survival data may provide a basis for an

alternative method to select the best set of treatment variables. An objective function with

this physiological basis would utilize the effect of increased cell killing at temperatures

above 42 to 43 C.

5.2.2 In Vitro Cell-Survival Curves

Survival curves are the basis of the objective function in this study. The

following are the steps involved in performing a typical experiment to generate cell-

survival curves. By using current techniques of tissue culture, samples from tumor or

normal regenerative tissues are divided into small pieces and prepared as single-cell

suspensions by the use of the enzyme trypsin, which dissolves adherent bonding on the

outer cell membrane. Trypsin also causes the cells to coalesce and detach from the

surface of the culture vessel. The number of cells per unit volume in a suspension is

counted mechanically prior to the experiment. Then the cells are seeded into a dish. After

the dish has been incubated for one to two weeks, each cell will divide many times and

form a colony. Therefore, all cells comprising each colony are the offspring of a single

ancestor. For a nominal 100 cells seeded into a dish, 50 to 90 colonies will form.

Ideally, 100 colonies should form, but because of a suboptimal growth medium, errors

and uncertainties in counting the cell suspension, and the trauma of trypsinization and
handling, only a fraction of cells originally seeded form colonies (Hall 1988). The term

plating efficiency (PE) gives the percentage of cells seeded that grow into colonies and
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thus is a measure of the cells which did not reproduce. For example, in the case where

there are 70 colonies counted, the plating efficiency would be 70%.

Cell survival of a heat treatment is determined by seeding a second dish with 100

cells, exposing it to a heat treatment at some temperature for a period time, and then

incubating the dish for one to two weeks before the cells are fixed and stained. After this

procedure, the following may be observed: (1) some of the seeded single cells are still

single and have not divided; (2) some cells completed one or two divisions to form a tiny

abortive colony; and (3) some cells have grown into large colonies that differ little from

the unheated controls. The cells of (3) are said to have survived. If the plating efficiency

was PE = 60%, only 60 cells would have grown into colonies if the dish had not been

heated. If only 10 colonies were counted, then the fraction of cells surviving the heat

treatment would be 0.167 (= 10/60). In general, the surviving fraction S is given by

s = Colonies counted (5.1)
Cells seeded (PE/JO0)

Experiments like the one described above are repeated so that estimates of cell

survival are obtained for a range of temperatures between 41 and 47 C and heating times

from 30 minutes to several hours. The surviving fraction is plotted versus exposure to

hyperthermia for several temperatures (Fig. 5.1).

5.2.3 Objective Function Formulation

The objective function is developed for use with dimensional tissue models in

Sec. 5.2.3.1. There is a brief discussion in Sec. 5.2.3.2 on how the objective function

might be used in simulations with nondimensional tissue models.
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Figure 5.1 Survival curves for mammalian cells in culture (Chinese hamster CHO line).
The surviving fraction S versus exposure time to hyperthermia is plotted for several
temperatures. This figure is a reprint of data gathered by Dewey et al. (1977a).

5.2.3.1 Dimensional Tissue Models

The model for simulating cell survival is shown in Fig. 5.2. The model is not

intended to represent cell survival of any particular established cell line, but rather cell

survival in general. Nonetheless, the data in Fig. 5.1 is represented closely by the models

in Fig. 5.2. It is possible to construct plots like the one shown in Fig. 5.2 from actual

cell-survival data by a two-step process. First, an exposure time to hyperthermia is

selected prior to treatment. The exposure time is typically 60 min. With the aid of a

vertical line in Fig. 5.1 for a preselected exposure time, the surviving fraction of tissue

can be determined at different temperatures. Then a plot is constructed of the surviving

fraction versus temperature for the preselected exposure time.
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Figure 5.2 The models of the fractional cell survival S as a function of tissue temperature
T for tumor and normal tissues. It is assumed that the hyperthermia treatment time for this
data is 60 min. Two models (A and B) simulating the survival of tumor tissue are shown.
Tmaim, thera. is shown here to be 42 C. The coefficient b is the slope of the (logarithmic)
cell-survival curves (Eq. 5.2).

It is assumed that tissue survival is solely a function of temperature for a

preselected exposure time. Thus tissue survival is independent of the cell pH, available

oxygen and nutrient levels, and cell cycle. A definition of cell survival relevant to

hyperthermia was assumed. In other words, cells were assumed to suffer reproductive

death when tissue temperature was above the minimum therapeutic temperature Tmin,

thera.. Therefore a partcular fraction of cells were unable to divide and cause further

regrowth at temperatures above Tn, thera., while below T,,n, thera., it was assumed that

no tissue was killed.

Although it is known that different cells have different sensitivities to heat, there is

no consistent difference in the heat sensitivity between normal and malignant cells (Hall,
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1988). One model for survival of tumor cells is, therefore, equal to the survival of

normal cells (Fig. 5.2, tumor tissue model B). In spite of the fact that there is no

consistent difference in the heat sensitivity between normal and malignant cells, Robins et

al. (1983) have shown that AKR leukemia cells were more sensitive than normal cells to

hyperthermia killing at 41.8 and 42.5 C. Thus the present study also investigates the

effect of a difference in the sensitivity between normal and malignant cells to heat, with

malignant cells being more sensitive (Fig. 5.2, tumor tissue model A).

The cell-survival data in Fig. 5.2 was approximated by logarithmic curves where

the fraction of cells surviving a heat treatment STisje Type [dimensionless] was a function

of tissue temperature T. The cell-survival data can be approximated by

STissue Type = 1 , T Tmin, thera. (5.2a)

STissue Type = 
10 b (T - Tmin, thera. , T > Tm, thera. (5.2b)

In Eq. 5.2, Tissue Type designates either tumor or normal tissue and b is the slope of the

cell-survival curve. In simulations within this study, b has a value of -1 for normal

tissues and a value of -1 or -2 for tumor tissues (Fig. 5.2). For other cell-survival

models, though, b could have value other than -1 or -2.

Because of the spatial dependence of temperature in tissue, the local fraction of

surviving cells STissue Type was integrated over the volume of tissue considered. The

volumetric, fractional cell survival is designated SV, Tissue Type and is given by

SV, Tissue Type = 1 , T _ Tmin, thera. (5.3a)



fV 10 b (T - Tmk, thewra. ) dV 9

Sv, Tissue Type = , T > Tmain,thera. (5.3b)

fv dV

Since the finite element method is used to determine the temperature distribution, Eq. 5.3

was computed using Sv, Tissue Type in each finite element e. Therefore the volumetric

fraction of cells surviving a heat treatment in finite element e, Sv(), Tissue Type, was

determined by integrating the surviving fraction with respect to the volume of the element

V(e) [m3] and then dividing by V(e). The expression for SV(e), Tissue Type is given by

SV(e), Tissue Type = 1 T(e) < Tmin, thera. (5.4a)

S v e)fTissue Type = V 10b (T(e) Tmintihera. ) dV , T(e) > Tmin, thera. (5.4b)

In Eq. 5.4, Tie) is the temperature in finite element e.

The fraction of tissue killed during a single heat treatment is

Total Number of
Finite Elements
of Tissue Type

Y (1 - Sv(e), Tissue Type ) V(e)

eTissue Type e=1(5.5)

In Eq. 5.5, VT [i 3] is the volume of the tumor and V~e) is the volume of tissue above

Tmi, thera.. In words, the formulation of Eq. 5.5 is as follows. The surviving fraction of
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tissue in finite element e was subtracted from one to give the fraction of tissue killed.

Then the fraction of tissue killed in finite element e was weighted by V(e) and this product

was summed for all finite elements of Tissue Type. The numerator was then divided by

VT to determine 19, the fraction of tissue killed in volume VT.

By dividing by VT in Eq. 5.5, comparisons of VT between tumors with different

volumes can be made (see Sec. 5.2.3.1.1). In addition, V'N is independent of the size and

shape of normal tissue considered so long as the temperatures at the vertices of the finite

elements in normal tissue at a sufficient distance from the heat sources are below Trin,

tzera.. In other words, Sv), Normal is equal to one for these finite elements and does not

contribute to the summation in the numerator of Eq. 5.5. Since finite element modelers

are free to select the location of the outer surface of normal tissue, subject only to known

boundary conditions on the outer surface, the formulation of 'TN in Eq. 5.5 has the

advantage of being independent of the size and shape of normal tissue.

The objective function consists of two terms and is given by

F = T-( 1 -y) 'N (5.6)

The first term on the right-hand side of the Eq. 5.6 is the fraction of tumor killed

multiplied by a scalar weighting factor y. The second term on the right-hand side of Eq.

5.6 is the fraction of normal tissue killed which is multiplied by (1 - )). This second term

is the penalty portion of the objective function. Since it is desired to maximize the fraction

of tumor killed, there is a penalty for heating normal tissue above Tmain, thera.1 1 .

Therefore the second term is subtracted from the first. Once a particular value for the

11Subjecting the tumor to very high temperatures will most likely kill all tumor cells but will also cause
severe damage to surrounding normal tissues. Thus a penalty portion of the objective function is
necessary.
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weighting factor yis selected, the mathematical goal is to maximize the objective function

(Eq. 5.6) over a range of values of the hyperthermia treatment variables. The

ferromagnetic hyperthermia treatment variables may include interseed spacing between

thermoseeds and the operating temperatures of each thermoseed. The optimum

hyperthermia treatment variables may also depend on the assumed models of the blood

flow rate in tumor and normal tissues.

5.2.3.1.1 Fractional Cell Survival

By dividing by VT in Eq. 5.5, WT can be used to compare the fraction of tissue

killed in tumors with different volumes. As an example, consider two, one-dimensional

tissue models. Tissue model 1 will have a tumor length of LT1 and a normal tissue length

of LN1. Similarly, tissue model 2 will have a tumor length of LT2 (> LT1) and a normal

tissue length of LN2 (< LNI). Both tissue models will have a total length of L. It is

assumed that there is no blood flow in these tissue models and the thermal conductivities

of the tumor and normal tissues are kT and kN (kN > kT). The maximum tumor

temperature achieved in tissue models 1 and 2 are TT1, ma and TT2, m respectively. Let

m/1 and 172 denote the fraction of tumor killed in tumors 1 and 2. Three separate cases will

be considered:

Case 1 The temperature profiles for the two tissue models are shown in Figs. 5.3a and
5.3b. If TT1, m=a = TT2, ,., then i 1 > 712 since LT2 > LT1 . The fractions of

tumor killed in LT1 and LT2 are

771LT,

ll2=12(LT2-ALT2) 7121 TLT)
'V2 LT2  LT2( 2

Since 'I'T > 1(T2, the temperature distribution in tumor 1 is more desirable.
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Figure 5.3a-b Temperature profiles in one-dimensional tissue
models. Tumor lengths in tissue models 1 and 2 are LT, and LT2 (>
LT1). The total length of both tissue models is L. There is no blood
flow in these tissue models. In figures (a) and (b) TT2 , m= = TT, Ma=.
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Case 2 The temperature profiles for the two tissue models are shown in Figs. 5.3a and
5.3c. If TTI, mM <TT2 , m,, so that TTJ(X = LT1) = TT2(X = LT2) = Trin, twra. then

'il <r12. The fractions of tumor killed in LTi, and LT2 are

W = 77hLi' 1LT

Wr2 = 12LT2 1 1
LT2

Since WTI1 < 'fT2 , the temperature distribution in tumor 2 is more desirable.

Case 3 The temperature profiles for the two tissue models are shown in Figs. 5.3a and
5.3d. If TTI, m,,, < TT2, .,, so that TTJ(X = LTJ) = Trin, thera. < TT2(X = LT2) then

771 < 112. The fractions of tumor killed in LT1 and LT2 are

IlLT= hi =LT 1 = i

'V12 = 112Li'2  2

Since 'VT1 < VT2, the temperature distribution in tumor 2 is more desirable.

However, because a fraction of normal tissue is heated above Trin, thera., the

temperature distribution in the combined tumor and normal tissues of model 2

may be less desirable than the temperature distribution in tissue model 1.
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Figure 5.3c-d Temperature profiles in one-dimensional tissue
models. Tumor length in tissue model is LT2 (> LTI). The total
length of the tissue model is L. There is no blood flow in these tissue
models. In figures (a) and (c) TTJ,ma < TT2 , ma=, and in figures (a)
and (d) TT, max < TT2, max.
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5.2.3.1.2 Weighting Factor

The value of the weighting factor yin Eq. 5.6 depends on treatment factors such

as the therapeutic goal of the hyperthermia treatment and the thermal tolerance of normal

tissues on the boundary of the tumor and normal tissues. The scalar weighting factor y

can have a value between 0 and 1. A guide for the selection of.,yis shown in Table 5.1.

Table 5.1 Guide for Selecting y

The therapeutic goal of the heat treatment must be considered when selecting a

value for y. A treatment plan with y= 0 would be impractical since this would minimize

completely normal tissue complications and therefore not optimize the heating of the

tumor. If the desired treatment goal is to minimize normal tissue complications, then y

should have a value between 0.2 and 0.5. If the treatment plan is designed to maximize

tumor death but there is concern for normal tissue complications, then y should have a

value between 0.6 and 0.8. If the desired treatment goal is to maximize tumor death, then

Hyperthermia Pretreatment Weighting Factor,

Design Considerations ,

Minimize Normal Tissue

Complications 0.2 - 0.5

Minimize Normal Tissue

Complications &

Maximize Tumor Death 0.6 - 0.8

Maximize Tumor Death 0.9 -1

Thermal Tolerance of Normal

Tissue near Tumor Periphery

Low 0.2 - 0.4

High 0.9- 1
Now
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y should have a value between 0.9 and 1. Although a treatment plan with y = 1 would

maximize tumor death, normal tissues would not be spared and the treaftment may cause

significant normal tissue heating on the tumor boundary. Therefore, a treatment plan with

y= 1 should be used with caution.

Another consideration in the selection of yis based on the thermal tolerance of

normal tissues at the tumor periphery. If the thermal tolerance of normal tissues on the

boundary of the tumor is low, then y should have a value between 0.2 and 0.4. If

normal tissue on the boundary can tolerate temperatures above Trin, thra. then y should

have a value between 0.9 and 1. Normal tissues that have a low thermal tolerance

generally have steep survival curves for temperatures 1 to 3 C above Train, h One

tissue that is considered to have a high thermal tolerance to local heating is the sclera

(Steeves et al. 1992).

In summary; choices of the weighting factor are somewhat arbitrary but the

guidelines and reasonable estimates are provided in Table 5.1. Estimates of the values for

the weighting factor are subject to further refinement via clinical observations and trials.

5.2.3.1.3 Upper & Lower Limit of Objective Function

The objective function F has an upper limit that approaches 1. If 7= 1, then the

second term on the right-hand side in Eq. 5.6 vanishes and F = WT. The fraction of tumor

killed V1T will approach 1 as the survival of tumor tissue Sve), Tuor (Eq. 5.5) approaches

0. However, Sv e), Tumor can never be identically equal to 0 since there will always be

some (infinitesimal) fraction of tumor that survives (recall Fig. 5.2). In the limit,

therefore, the objective function approaches 1.

The objective function has a negative lower limit that will approach the ratio of the

volume of normal tissue VN to the volume of tumor tissue VT. When '= 0, the first term
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on the right-hand side of Eq. 5.6 vanishes and F =-V 1N. In Eq. 5.5, the fraction of

normal tissue killed V'N is equal to the ratio of the volume of normal tissue which is heated

above Th, tlwra,. to the volume of tumor VT. If Sv(e), Normal for all e in normal tissue

approaches 0 and if VN = VT, then F approaches -1. If VN < VT and Sv(e), Normal is near

0 for all e, then F will be between 0 and -1. Otherwise, if VN > VT and Sv(e), Normal is

near 0 for all e, F will be less than -1.

5.2.3.2 Nondimensional Tissue Models

The fraction of tissue surviving in finite element e, Sv(e), Tissue Type (Eq. 5.4), the

fraction of tissue killed in tumor or normal tissues VTissue Type (Eq. 5.5), and the objective

function F (Eq. 5.6) can be determined for nondimensional tissue models. After

determining T* for the nondimensional tissue model, the tissue temperature T [C] can be

determined with Eq. 4.7. Now Eqs. 5.4, 5.5 and 5.6 can be evaluated with the known

values of T.

5.3 Numerically Computed Objective Function

The accuracy of the calculation of the objective function (Eq. 5.6) was studied by

comparing analytical solutions (Sec. 5.3.1) to solutions obtained numerically with FEHT

(Sec. 5.3.2).

5.3.1 Analytically Computed Objective Function

The tissue model considered in this analysis is 1/3 of a circular-shaped tissue region

which has a thermoseed placed at the center (Fig. 3.6). Although the heat flow in the

tissue model is assumed one-dimensional (Ch. 3), the following analysis will be

pefformed in the x and y directions. (Unit depth in the z-direction is assumed.) Thus the
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analysis will be developed for the cross-sectional area A of tissue not for the tissue

volume V. The tissue model is composed of a circular-shaped, inner tumor with inner

radius ri and outer radius rT surrounded by normal tissue with outer radius ro. The inner

radius of the tissue ri is synonymous with the radius of the thermoseed r,.

Recall that the analytically-determined, steady-state temperature distribution above

Tb in the tissue- model in Fig. 3.5 is denoted by 0 (Eq. 3.4). Substituting Eq. 3.4 into

Eq. 5.3b gives

STissue Type = 10 b [(Tb + 6) - Tin, t/zra.] dA
A fA(5.7)

A change in the variable of integration is possible by considering an elemental volume of

tissue in Fig. 3.5. The limits of integration become

fAdA =f°ydr

With the change in the variable of integration, the integral in Eq. 5.7 becomes

S T e= 3 10 b [(Tb + 0 ) - Tmin,thera.] r dr
3TissAe

= 22 rk) f' 10b [(Tb + 0) - Tmin, tea.] r dr (5.8)
k frk (.8
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Evaluation of Eq. 5.8 for tumor and normal tissues and values of r, and rk are as follows.

For the tumor, rk equals ri and rl is the radius of the tumor rT or the radius of the

Train, thera. isotherm, whichever is smaller. For normal tissue, if rT is smaller than the

radius of the Ti, tra., isotherm, then rk equals rT and rl is the radius of the T,,, thera.

isotherm. Otherwise, rT is larger than the radius of the T,,,, thera,. isotherm and 100% of

the normal tissue survived and SN = 1 (Eq. 5.8).

With the fraction of cell survival STissse Type determined for normal and tumor

tissues, WTiss Type can be computed with

(1 - STissue Type ) VTissue Type

VTissue Type = V (5.9)

Equation 5.9 is used for determining VfTissue Type for tumor and normal tissues. In Eq.

5.9, VTiss,, Type is the volume of tissue above T,,i, thera.. Equation 5.9 can now be used

to evaluate Eq. 5.6 for the objective function F.

Since the temperature function 0 inside the integral in Eq. 5.8 contains several

Bessel functions (recall Eq. 3.4), the integration of Eq. 5.8 was evaluated with

Mathematica (Wolfram 1988). The input data for the Mathematica program to perform the

integration of Eq. 5.8 is in Appendix C.1.

5.3.2 Numerically Computed Objective Function

Unlike the analytically-computed fractional cell survival STissue Type where one

integration was performed over a continuum of tissue (Eq. 5.8), the numerical solution

will require an integration over each finite element in the mesh.

Let the temperature within a triangular-shaped, finite element e be () and equal to
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4i T + 4jT(e) +k (5.10)

. T~e (e) (e)In Eq. 5.10, 4j, 4j and 4k are interpolating functions add Tie), Tj(e) and Tare the

temperatures at vertices i, j and k of finite element e. Substituting Eq. 5.10 into Eq. 5.4b

gives

1 (
SA (e), Tissue Type A (e)

A( (e)

10 b [( iTie) + ,jje) '+ kT e2) - Tmin, theraj.] dA (5.11)

From Myers (1989), it is known that

S= L[( Ykx-Y yj) - YjkX + XjkY I

4j-b=ik I x k y i - x iy k  + YikX - XikY

4k b-'(x;iYjxjyj)YjjX +xijy]

(5.12a)

(5.12b)

(5.12c)

where b-ik = xijYjk-xjkij and x-- = x-xi. Substituting Eq. 5.12 into 5.11 and

rearranging terms gives

1 (SA (e), Tissue Type = A (e) (

J e A (e)
10 b [(al + a2x + a3y ) - Tin, thera.] dA

where

(5.13)
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a, = 1 [ (XjYk-XkYj) Te) + (XkLi- XiYk) je) + (XijXjY 7;) je) ]

+byjk To YT)1 2 (_yT(e)+ e)_T(e)
a3 = biJk

a3 = b k (x kffe) - xikT 1 ) + xTe)

The integration in Eq. 5.13 is over the area in finite element e. An example of finite

element e is shown in Fig. 5.4.

Yi

yj

y axis M, YA;- Yi
Xk- x i- - --.. .

S+ b

22
m2= xi xi

xi xi

Y3 = m3 x + b3

Yk-Y'
1 m 3 =

x axis
xk

Figure 5.4 Example of finite element in which integration in Eqs. 5.13 and 5.14 are
performed. The finite element has vertices i, j and k. The general (linear) equation fit for
the three element lines connecting the vertices are shown. The slopes of the element lines
are designated by mj, m2 and m3.
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With a change in the limits of integration, Eq. 5.13 becomes

= b2k *f f 1 0 b [( a, + a2x + a3y) - Tmintera.] dx dy +SA (e), Tisse ye10 i

2xi

2 J1f10b [(al + a2x + a3y)-Trin, thera.] dx dy (514)

In Eq. 5.14, x*, xj, xk, Y1,Y2 and Y3 are shown in Fig. 5.4. The term bijk can be shown

to equal 2(e) (Myers 1989). The integration of Eq. 5.14 was performed symbolically

with the aid Mathematica to obtain a general form of the solution. The general form of the

solution is listed in Appendix C (Sec. C.2). Equation 5.14 can now be used to evaluate

Eqs. 5.5 and 5.6 for the surviving fraction V(and the objective function F.

An analysis of the general solution to Eq. 5.14 revealed that the surviving fraction

of tissue SA(e), Tissue Type does not depend on the size of the triangular-shaped finite

element (Appendix C.3). Instead the surviving fraction is a function only of the

temperatures Ti, Tj and Tk at the vertices of the triangular element, the slope b of the

survival curve, and the minimum therapeutic temperature Tmin, thera.. The general

solution to Eq. 5.14 was placed in FEHT as an algorithm.

5.3.3 Objective Function: Numerical vs. Analytical Solutions

The accuracy of the numerical solutions depends on an adequate choice of the finite

element mesh. Simulations were performed with the dodecagonal thermoseed model and

with uniform blood flow rates of m = 0.01, 0.1 and 1 1/min-.kg. Although the dodecagon

was selected as the preferred thermoseed model (Sec. 3.3), simulations were also

performed for the hexagonal thermoseed model.
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The numerical method requires the use of an adequate mesh size to obtain accurate

solutions. A finite element mesh of 387 elements in the simulated tissue (Fig. 3.5) was

reduced systematically in size to obtain meshes of 411, 507 and 603 elements. Element

discretization was concentrated in the tumor near the thermoseed. The percentages of

tumor and normal tissues greater than Tmin, thera. (= 42 C), VT, VfN and F are in Table

5.2. As evident from Table 5.2, a finite element mesh of 603 elements was sufficient for

convergence of the numerical solutions of the dodecagonal and hexagonal thermoseed

models.

Simulations were performed on the tumor and normal tissue model with one

thermoseed centrally located (Fig. 3.5). The objective function F was determined using

the methods discussed in Secs. 5.3.1 and 5.3.2. The simulations were performed with

uniform blood flow rates in tumor and normal tissues of m = 0.05, 0.1, 0.25, 0.5 and 1

1/min-kg. The energy absorption rates (gP0"= P'1As) of the analytical and numerical

thermoseed models were determined at each blood flow rate so that the thermoseed

temperature Ts was 60 C. Unlike Sec. 3.3 where the thermoseed model was constrained

by power P', the thermoseed model is constrained here, by temperature. In Sec. 3.3, the

thermoseed model was constrained by power P' so that the thermoseed and tissue

temperatures predicted by the numerical thermoseed models could be compared with those

of the analytical model. In this section, however, the thermoseed temperature Ts is

constrained so that the calculation of the objective function by the numerical method could

be compared with the that of the analytical method. If, in this section, the thermoseed

was constrained by power P', then the error in the numerically computed objective

function would be confounded with the error in the numerical thermoseed models.

The percentages of tumor and normal tissues greater than Train,, thera., 'VtT, 'N and F

for Tmai, thera. =---42 C are in Table 5.3. The predicted fraction of tissue killed 11 Tissue Type
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Table 5.2 Finite Element Mesh Reduction Study
Trin, thera. = 42 C

(a) Uniform blood flow, m = 0.01 I/min-kg

Number of % Tumor % Normal VTN Objective

Seed Finite Tissue Tissue Tumor Normal Function, F
Model Elements > 42 C > 42 C (Eq. 5.5) (Eq. 5.5) (y = 0.8)

Hexagon 387 100 1.17 1 3.64 0.07
411 100 1.18 1 3.65 0.07
507 100 1.15 1 3.54 0.09
603 100 1.08 1 3.55 0.09

Dodecagon 387 100 1.18 1 3.66 0.07
412 100 1.18 1 3.66 0.07
508 100 1.16 1 3.56 0.09
603 100 1.09 1 3.56 0.09

(b) Uniform blood flow, m = 0.1 1/min-kg

Number of % Tumor % Normal VT N . Objective
Seed Finite Tissue Tissue Tumor Normal Function, F

Model Elements > 42 C > 42 C (Eq. 5.5) (Eq. 5.5) (r = 0.8)
Hexagon 387 100 0.20 0.99 0.51 0.69

411 100 0.20 0.99 0.52 0.69
507 100 0.15 1.00 0.40 0.72
603 100 0.17 1.00 0.47 0.70

Dodecagon 387 100 0.20 0.99 0.52 0.69
412 100 0.20 0.99 0.52 0.69
508 100 0.15 1.00 0.41 0.72
603 100 0.17 1.00 0.48 0.70

(c) Uniform blood flow, m = 1 I/min-kg

Number of % Tumor % Normal VT VN Objective
Seed Finite Tissue Tissue Tumor Normal Function, F

Model Elements > 42 C > 42 C (Eq. 5.5) (Eq. 5.5) (y = 0.8)
Hexagon 387 33.4 0 0.30 0 0.24

411 33.4 0 0.30 0 0.24
507 34.5 0 0.31 0 0.25
603 34.6 0 0.31 0 0.25

Dodecagon 387 33.6 0 0.30 0 0.24
412 33.5 0 0.30 0 0.24
508 34.7 0 0.31 0 0.25
603 34.7 0 0.31 0 0.25
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Table 5.3 Numerically and Analytically Computed Objective Function
Train thera. = 4 2 C

% Tumor % Normal WT 1 N Objective
Blood Flow, m Seed Tissue Tissue Function, F

(1/min-kg) Model* > 42 C > 42 C (Eq. 5.5) (Eq. 5.5) (y = 0.8)
0.05 H 100 0.44 1 1.37 0.53

D 100 0.45 1 1.40 0.52
A 100 0.40 1 1.25 0.55

0.1 H 100 0.17 1.00 0.47 0.70
D 100 0.18 1.00 0.49 0.70
A 100 0.15 0.99 0.38 0.72

0.25 H 89.0 0 0.78 0 0.62
D 89.5 0 0.78 0 0.63
A 83.4 0 0.78 0 0.62

0.5 H 55.4 0 0.49 0 0.39
D 55.7 0 0.49 0 0.39
A 51.6 0 0.48 0 0.39

1 H 34.7 0 0.31 0 0.25
D 34.7 0 0.31 0 0.25
A 32.2 0 0.30 0 0.24

*H- Hexagonal model; D -Dodecagonal model; A - Analytical model

in the tumor and normal tissues and the objective function F as a function of blood flow

are shown in Fig. 5.5. It is concluded that the calculation of the fraction of tissue killed
IpTissue Type and the objective function F for the numerical hexagonal and dodecagonal

thermoseed models adequately match the analytical solution.



111

2
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0

F f

0 0.2 0.4 0.6 0.8 1
Blood Flow, m (I/min-kg)

Figure 5.5 The fraction of tissue killed WTissue Type and the objective function F
versus blood flow rate. The analytical solutions (solid lines) were determined with Eqs.
5.6 and 5.9. The solutions predicted by FEHT with the hexagonal (long dashes) and
dodecagonal (short dashes) thermoseed models were computed with Eqs. 5.5, 5.6 and
5.14. In the simulations, Trin, thera. = 42 C.

5.4 Concluding Remarks

In this chapter an objective function F was developed that can be used to optimize

hyperthermia treatments. There are several salient features of the objective function.

First, the objective function has a physiological basis and considers increased cell killing

at temperatures above 42 to 43 C (= Tmi, thwra.). Second, there is a (penalty) term, N, in

the objective function to account for heating of normal tissues above Tmn, thzera.. Third,

because normal tissues below Tmin, thera. are eliminated in the determination of the fraction

of normal tissue killed (VfN), the objective function is independent of normal tissue size

and shape, subject to a known outer-surface, thermal boundary condition (e.g., Toter

surf"ace = Tb). Next, by dividing by the volume of the tumor VT in Eq. 5.5, 'VT can be

compared with tumors of different shapes and sizes. Last, since there is a scalar
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weighting factor yin the objective function that has treatment implications, the oncologist

becomes an active participant in pretreatment planning.

The objective function was computed numerically with FEHT and shown to

compare favorably with analytically computed values for simple tissue geometries.
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Chapter 6

Performance of Objective Function with
an Idealized Tissue Model

In this chapter simulations are performed on a square tissue model. The simulations

are conducted to assess the performance of the objective function (see Chapter 5) in an

idealized tissue model. Although any geometrically shaped tissue model could have been

used (e.g., triangle, rectangle, etc.), a square thermoseed array in a square tissue model

has symmetry conditions that simplify the model. The description of the simulations is

presented in Sec. 6.1.

In Sec. 6.2, the objective function is used to aid in selecting optimal thermoseed

temperatures and seed spacings a priori. The effects of tumor survival models, weighting

factors, blood flow rates, and thermoseed operating temperatures on the objective

function are studied independently. Criteria that will be used to assess the performance of

the objective function include: (1) sensitivity to the tumor survival model (Sec. 6.2.1), (2)

presence of a unique maximum of the objective function (Sec. 6.2); (3) sensitivity of the

objective function to interseed spacing between thermoseeds (Sec. 6.2); (4) sensitivity of

the objective function to the weighting factor (Sec. 6.2.2); (5) sensitivity of the objective

function to variations in blood flow in the tumor and normal tissues (Sec. 6.2.3); and (6)

sensitivity of objective function to thermoseed operating temperatures (Sec. 6.2.4).
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In this chapter, two methods are used to choose optimum 12 thermoseed

configurations a priori. One method is baied on maximizing the minimum tumor

temperature (Trin, tu,,r) and the other method is based on maximizing the objective

function F (Eq. 5.6). The suitability of the objective function is assessed by determining

if the fraction of tumor killed, VT, using the objective function is larger than 'VT using

temperature descriptors (Sec. 6.3). The performance of the objective function is also

characterized by how well the optimum thermoseed configurations satisfy temperature-

based therapeutic criteria (Sec. 6.3). The major results from the simulations are

summarized in Sec. 6.4.

6.1 Description of Simulations

Simulations were performed on the tissue model shown in Fig. 4.6 which is

implanted with a square 4x4 array of thermoseeds. The simulated tumor was implanted

with thermoseeds of uniform operating temperature of 48.1, 54.1 or 60.1 C (Table 4.1).

An array of 48.1 C-type thermoseeds consisted of 16 thermoseeds with operating

temperatures of 48.1 C. Similarly, arrays of 54.1 C- and 60.1 C-type thermoseeds

consisted only of thermoseeds with operating temperatures of 54.1 and 60.1 C,

respectively. The preceding three thermoseed configurations are considered uniformly-

loaded arrays. To study the effect of placing thermoseeds with higher operating

temperatures near the tumor periphery and lower operating temperatures near the center of

the thermoseed array, simulations were performed with a differentially-loaded thermoseed

array. The differentially-loaded thermoseed array consisted of a combination of four

12prior to the study of these two methods to choose optimum thermoseed configurations, optimization
studies in ferromagnetic hyperthermia pretreatment planning have been limited to a few theoretical and a
few in-vitro and in-vivo investigations (Sec. 1.5). None of these previous studies have proposed either of
the two methods discussed in this chapter to plan ferromagnetic hyperthermia treatments.
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48.1-type, eight 54.1-type and four 60.1-type thermoseeds. The 54.1 C-, 60.1 C- and

48.1 C-type thermoseeds were located at seed positions 1, 2 and 3, respectively, in Figs.

4.6 and 4.7.

Simulations were conducted with arrays of bare thermoseeds that were spaced

uniformly in the x and y directions with an interseed spacing 1 between 9 and 15 mm. All

simulations were performed with a mesh of 1530 finite elements (Sec. 4.2.1.1). The

Newton-Raphson technique 13 was used to determine thermoseed temperature (Sec.

4.1.1.1). The dodecagonal thermoseed model was used in the simulations (Sec. 3.2.3).

Seven blood flow models are used in simulations in this chapter (Table 6.1). The

numerical values of the blood flow cover the range of blood flow models found in

reviewed journal papers. The various blood flow models are investigated to study the

influence of changes in tumor blood flow mt and normal tissue blood flow m, on the

objective function. Blood flow models 1, 2 and 3 assume there is uniform, moderate rate

of blood flow in the tumor (0.1 /min-kg) while models 4, 5 and 6 use a higher, uniform

tumor blood flow (0.25 /min-kg). Blood flow model 7 is a nonuniform tumor blood

Table 6.1 Blood Flow Models used in Simulations

Blood Flow Blood Flow (I/min-kg)
Model Tumor, mt Normal, mn

1 0.1 0.1
2 0.1 0.25
3 0.1 0.5
4 0.25 0.25
5 0.25 0.5
6 0.25 1
7 .. 1.. "~(c); 0.75(p) 0 .5

13AnLj alternative method for determining thermoseed temperatures is the use of the variable-property
routine in FEHT (Sec. 4.3.2.1).
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flow model where the blood flow in the tumor periphery ((p) in Table 6.1) is 7.5 times

greater than the tumor core ((c) in Table 6.1) and 1.5 times greater than the normal

tissue14 . Blood flow models 2, 5 and 7 are considered the models which closely

represent the actual blood flow in a real tissue system 15.

6.2 Optimum Thermoseed Spacing and Operating Temperatures

Several figures in this section are plots of the objective function F versus

thermoseed spacing 1. The figures in each subsection consist of curves of the variable

under independent investigation. For example, Sec. 6.2.1 investigates the effect of tumor

survival models on the objective function; Sec. 6.2.2 studies the effect of the weighting

factor , Sec. 6.2.3 looks at the effect of blood flow; and Sec. 6.2.4 investigates the effect

of thermoseed operating temperature on the objective function. The results are presented

in this manner to-elucidate the influence of each variable on the objective function. The

optimum thermoseed designs based on the objective function are discussed in Sec. 6.2.5.

6.2.1 Effect of Tumor Survival Model

The fraction of tumor killed and the objective function versus thermoseed spacing

for the two models simulating the survival of tumor tissue is shown in Fig. 6.1. Since

tumor survival model A has a steeper slope (b = -2) than model B (b = -1) (Fig. 5.2),

more tumor will be killed in simulations using tumor model A versus model B at the same

14 Earlier studies and clinical experience have shown that often, the inner core of the tumor is a tough,
fibrous tissue and may have a blood flow that differs vastly from the outer periphery of the tumor. Thus
the tumor was modeled as two distinct regions consisting of an inner core and an outer periphery.
15Blood flow models 2, 5 and 7 will appear in bold type in the remainder of this chapter. Furthermore, of
blood flow models 2, 5 and 7, model 7 is considered the model which most closely represents the blood
flow in real tissue since it contains a necrotic tumor core and well-perfuse tumor periphery.
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temperature. In all simulations, therefore, VfT and F were larger with tumor survival

model A than model B at the same t.

Percent differences, averaged over all thermoseed spacings, between the objective

function with tumor survival m6del A and model B are 8.6, 2.3 and 0.8% for the 48.1

C-, 54.1 C- and 60.1 C-type thermoseed arrays and with blood flow model 2 (Table 6.2).

Table 6.2 Tumor Survival Model Influence on Objective Function

Percent difference in objective function between tumor models A and B
Operating temperature of thermoseeds in array

Seed 48.1 C-type 54.1 C-type 60.1 C-type
Spacing, Blood flow model Blood flow model Blood flow model
l (mm) 2 5 7 2 5 7 2 5 7

9 2.9 11.2 5.2 2.3 2.4 2.1 2.0 2.0 1.6
10 3.0 18.0 9.0 2.1 2.7 3.8 1.8 2.0 2.4
11 3.7 14.2 9.5 2.0 5.3 6.9 1.2 1.9 3.6
12 6.0 12.5 16.0 1.9 12.3 5.4 0.4 2.2 5.6
13 11.4 12.9 12.1 1.7 12.3 5.9 0.1 5.3 4.6
14 16.3 10.3 12.4 1.8 10.1 7.5 0.0 8.4 4.3
15 16.8 11.1 12.8 4.2 9.3 12.9 0.0 10.8 4.1

Ave: 8.6 12.9 11.0 2.3 7.8 6.4 0.8 4.7 3.7

There was a 12.9, 7.8 and 4.7% difference for the same three thermoseed arrays and

blood flow model 5, and a 11.0, 6.4, 3.7% difference with blood flow model 7. The

largest percent difference with an array of 48.1 C-type thermoseeds was 18% (1= 10 mm

and blood flow model 5), while the maximum percent difference in the objective function

in simulations with arrays of 54.1 C- and 60.1 C-type thermoseeds was 12.3% (1= 13

mm and blood flow model 5) and 10.8% (l = -15 mm and blood flow model 5).

The curves in Fig. 6.1 and Table 6.2 reveal that the objective function is wealy

dependent on differences between tumor survival models A and B. Thus the first criteria

(in second paragraph of this chapter) on the sensitivity of the objective function to the
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tumor survival model has been established. It is concluded that since the hyperthermia

cell survival of the tumor can only be approximated, differences, similar to the two

models used herein, between the actual and the model of tumor cell survival should have a

minimal influence on the fraction of tumor killed and the objective function. Thus the

simulations in the remainder of Sec. 6.2 were performed with tumor survival model B.

6.2.2 Effect of Weighting Factor

The objective function F versus thermoseed spacing 1 for weighting factors 7of 0.2,

0.5, 0.8 and 1 are shown in Figs. 6.2 through 6.8 for all four types of thermoseed

arrays. Figures. 6.2 through 6.8 are the results from simulations with blood flow models

1 through 7, respectively. In Figs. 6.2 through 6.8, the objective function increases at all

interseed spacings with increasing weighting factors because of the linear dependence

between the weighting factor and the objective function (Eq. 5.6). The optimum

thermoseed spacing for several weighting factors y, blood flow rates m and thermoseed

operating temperatures are compiled in Table 6.3.

6.2.2.1 Moderate Tumor Blood Flow

The weighting factor had a negligible effect on altering the location of the optimum

thermoseed spacing when tumor blood flow mt was 0.1 1/min-kg (blood flow models 1, 2

and 3) and with an array of 48.1 C-type thermoseeds (Table 6.3 and Figs. 6.2a, 6.3a and

6.4a). The optimum thermoseed spacing did*decrease though with increasing normal

tissue blood flow. For a five-fold increase in normal tissue blood flow mn from 0.1 to

0.5 /min-kg, the optimum thermoseed spacing decreased from about 12.8 to 11.7 mm.

The weighting factor can alter the optimum thermoseed spacing when tumor blood

flow mt is 0.1 1/min-kg with arrays of 54.1 C- and 60.1 C-type thermoseeds and with the
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Effect of Weighting Factor - Blood Flow Model 1
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Figure 6.2 Objective function F versus thermoseed spacing 1 with weighting factors yof 0.2, 0.5, 0.8
and 1. Simulations were performed with blood flow model 1 (Table 6.1) and with arrays of (a) 48.1 C-
type, (b) 54.1 C-type, and (c) 60.1 C-type thermoseeds and (d) the differentially-loaded thermoseed design.
Simulations were performed with tumor survival model B (Fig. 5.2), Trin., thera. = 42 C. Maximums of
the objective function are shown with black dots and vertical arrows.
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Effect of Weighting Factor - Blood Flow Model 2

S0.8 1-"

" 0.6

0.4

02 0.2

0

9 10 11 12 13

1

0.8
=0.5

" 0.6

o> 0.4

0.2

14 15 0
Thermoseed Spacing, 1 (mm)

(a) 48.1 C-type

t 0. 8 -----

0.6

o 0.4

_ 0.2

0
9 10 11 12 13 14 15

Thermoseed Spacing, 1 (mm)

(c) 60.1 C-type

9 10 11 12 13 14 15
Thermoseed Spacing, 1 (mm)

(b) 54.1 C-type

1

4 0.8 -
y0.8

0.6
0.6y,=0.

S0.4
"=0.2

02

0
9 10 11 12 13
Thennoseed Spacing,

(d) Differentially-Loaded Design

Figure 6.3 Objective function F versus thermoseed spacing I with weighting factors yof 0.2,0.5,0.8
and 1. Simulations were performed with blood flow model 2 (Table 6.1) and with arrays of (a) 48.1 C-
type, (b) 54.1 C-type, and (c) 60.1 C-type thermoseeds and (d) the differentially-loaded thermoseed design.
Simulations were performed with tumor survival model B (Fig. 5.2), Trin, thera. = 42 C. Maximums of
the objective function are shown with black dots and vertical arrows.
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Effect of Weighting Factor - Blood Flow Model 3
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Figure 6.4 Objective function F versus thermoseed spacing I with weighting factors yof 0.2,0.5,0.8
and 1. Simulations were performed with blood flow model 3 (Table 6.1) and with arrays of (a) 48.1 C-
type, (b) 54.1 C-type, and (c) 60.1 C-type thermoseeds and (d) the differentially-loaded thermoseed design.
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Effect of Weighting Factor - Blood Flow Model 4
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Figure 6.5 Objective function F versus thermoseed spacing / with weighting factors y of 0.2, 0.5, 0.8
and 1. Simulations were performed with blood flow model 4 (Table 6.1) and with arrays of (a) 48.1 C-
type, (b) 54.1 C-type, and (c) 60.1 C-type thermoseeds and (d) the differentially-loaded thermoseed design.
Simulations were performed with tumor survival model B (Fig. 5.2), Trin, thera. = 42 C. Maximums of
the objective function are shown with black dots and vertical arrows.
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Effect of Weighting Factor - Blood Flow Model 5
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Figure 6.6 Objective function F versus thermoseed spacing I with weighting factors y of 0.2, 0.5, 0.8
and 1. Simulations were performed with blood flow model 5 (Table 6.1) and with arrays of (a) 48.1 C-
type, (b) 54.1 C-type, and (c) 60.1 C-type thermoseeds and (d) the differentially-loaded thermoseed design.
Simulations were performed with tumor survival model B (Fig. 5.2), Train, tra. = 42 C. Maximums of
the objective function are shown with black dots and vertical arrows.
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Effect of Weighting Factor - Blood Flow Model 6
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Figure 6.7 Objective function F versus thermoseed spacing 1 with weighting factors y of 0.2, 0.5, 0.8
and 1. Simulations were performed with blood flow model 6 (Table 6.1) and with arrays of (a) 48.1 C-
type, (b) 54.1 C-type, and (c) 60.1 C-type thermoseeds and (d) the differentially-loaded thermoseed design.
Simulations were performed with tumor survival model B (Fig. 5.2), Trin, thera. = 42 C. Maximums of
the objective function are shown with black dots and vertical arrows.
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Effect of Weighting Factor - Blood Flow Model 7
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Figure 6.8 Objective function F versus thermoseed spacing 1 with weighting factors yof 0.2, 0.5,0.8
and 1. Simulations were performed with blood flow model 7 (Table 6.1) and with arrays of (a) 48.1 C-
type, (b) 54.1 C-type, and (c) 60.1 C-type thermoseeds and (d) the differentially-loaded thermoseed design.
Simulations were performed with tumor survival model B (Fig. 5.2), Trin, thera. = 42 C. Maximums of
the objective function are shown with black dots and vertical arrows.
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Table 6.3 Optimum Thermoseed Spacing
(See Table 6.1 for decaription of blood flow models.)

(a) 48.1 C-typ design
Bl60d Flow Optimum Themoseed Spacing, lopt-(mm)

Model y= 0.2 y= 0.5 y= 0.8 r, = 1
1 12.8 12.8 12.8 12.8
2 12.1 12.1 12.1 12.1
3 11.7 11.7 11.7 11.7
4 <9 <9 <9 <9
5 <9 <9 <9 <9
6 <9 <9 <9 <9
7 <9 <9 <9 <9

S ) 54.1 C-type design
Blood Flow Optimum Thermoseed Spacing, lopt (mm)

Model ,=0.2 y=0.5 y= 0.8  '= 1

1 11.0 11.8 12.7 14.0
2 12.7 13.2 13.4 13.6
3 13.3 13.4 13.5 13.6
4 11.2 11.2 11.2 11.2
5 11.0 11.0 11.0 11.0
6 10.8 10.8 10.8 10.8
7<9 <9 <9 <9

(c) 60.1 C-type design
Blood Flow Optimum Thermoseed Spacing, 'opt (mm)

Model y= 0.2 y= 0.5 y= 0.8 y = 1
1 <9 .9.8 11.2 13.0
2 10.5 11.5 12.5 13.8
3 12.0 12.8 13.5 13.8
4 12.9 12.9 12.9 12.9
5 12.7 12.7 12.7 12.7
6 12.5 12.5 12.5 12.5
7 10.1 10.1 10.1 10.1

(d) Differentialy-Lo design
Blood Flow Optimum Thermoseed Spacing, lopt (mm)

Model y=0.2 y= 0.5 y= 0.8 '= 1
1 10.3 11.0 11.7 13.1
2 12.0 12.4 13.1 13.4
3 13.0 13.4 13.5 13.5
4 10.4 10.4 10.4 10.4

5 10.3 10.3 10.3 10.3
6 10.2 10.2 10.2 10.2
7 " 9.1 "9.1 ' 9.1 9.1
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differentially-loaded array. For example, when yincreased from 0.2 to 1, the optimum

spacing in an array of 54.1 C-type thermoseeds increased from 11 to 14 mm (Fig. 6.2b),

from 12.7 to 13.6 mm (Fig. 6.3b) and from 13.3 to 13.6 mm (Fig. 6.4b) for normal

tissue blood flow rates m. of 0.1,0.25 and 0.5 1/min-kg, respectively.

The optimum thermoseed spacing generally decreased, while maintaining

approximately the same value for the objective function, with an array of 60.1 C-type

thermoseeds versus that of 54.1 C-type thermoseeds. The decrease in thermoseed

spacing is evident by comparing Figs. 6.2c with 6.2b, Fig. 6.3c with 6.3b, Figs. 6.4c

with 6.4b. For instance, when y= 0.8 and normal tissue blood flow m. is 0.25 1/min-kg,

the maximum of the objective function for arrays of 54.1 C- and 60.1 C-type thermoseeds

is 0.77. This maximum occurs at an interseed spacing of 13.4 mm for the array of 54.1

C-type thermoseeds and at 12.5 mm for the array of 60.1 C-type thermoseeds (Table

6.3).

The maximums of the objective function with the differentially-loaded design for all

Ys studied were close to those of the 54.1 C- and 60.1 C-type arrays (Figs. 6.2d, 6.3d

and 6.4d). The optimum thermoseed spacings of the differentially-loaded design were

close or slightly less than those of the 54.1 C-type thermoseed design (Table 6.3d).

6.2.2.2 High Tumor Blood Flow

The objective function was maximized with an interseed spacing less than 9 mm

when tumor blood flow mt was 0.25 1/min-kg and with an array of 48.1 C-type

thermoseeds (Figs. 6.5a, 6.6a and 6.7a and Table 6.3a). The objective function was also

maximized with arrays of 54.1 C- and 60.1 C-type thermoseedls. The optimum spacing

mn an array of 54.1 C-type thermoseeds was about 11.2, 11 and 10.8 mm with normal

tissue blood flow rates mn of 0.25, 0.5 and 1 1/mmn-kg, respectively (Figs. 6.5b, 6.6b
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and 6.7b and Table 6.3b). The optimum spacing in the array of 60.1 C-type thermoseeds

was 12.9, 12.7 and 12.5 mm for the same four-fold increase in normal tissue blood flow

from 0.25 to 1 1/min-kg. Similarly, the optimum spacing in the differentially-loaded array

was 10.4, 10.3 and 10.2 mm for the same four-fold increase in m.

The maximum of the objective function with r= 1 increased by approximately 0.27,

0.2 and 0.18 with the array of 60.1 C-type thermoseeds versus that of 54.1 C-type

thermoseeds at normal tissue blood flows m, of 0.25, 0.5 and 1 1/min-kg, respectively

(compare Figs. 6.5c and 6.5b, Figs. 6.6c with 6.6b and Figs. 6.7c with 6.7b). The

maximum of the objective function with the array of 54.1 C-type thermoseeds occurred

with an interseed spacing of about 11 mm, averaged over normal tissue blood flows mn

of 0.25, 0.5 and 1 1/min-kg. Similarly, the maximum of the objective function with the

array of 60.1 C-type thermoseeds occurred with an interseed spacing of about 12.7 mm,

averaged over normal tissue blood flows studied. Thus at higher rates of tumor blood

flow, wider interseed spacing can be used with higher operating temperature thermoseeds

to attain an equal or higher value of the objective function.

The differentially-loaded thermoseed design attained maximum objective functions

that were similar to those of the 54.1 C-type thermoseed array (Figs. 6.5d, 6.6d and

6.7d). The maximum of the objective function in the differentially-loaded array occurred

with an interseed spacing of about 10.3 mm, averaged over normal tissue blood flow of

0.25, 0.5 and 1 l/min-kg. Thus the differentially-loaded array heated the tumor and

normal tissues close to that of the 54.1 C-type array, but lopt was between 0.6 and 0.8

mm tighter in the differentially-loaded design than in the 54.1 C-type design (Table 6.3d

and 6.3b).



130

6.2.2.3 Compartmentalized Tumor Blood Flow Model

Optimum spacings in the arrays of 48.1 C and 54. C-type seeds were less than 9

mm (Figs. 6.8a and 6.8b). Optimum seed spacings in the 60.1 C-type and the

differentially-loaded arrays were 10.1 and 9.1 mm, respectively (Fig. 6.8c and 6.8d). In

both the 60.1 C- and differentially-loaded arrays, however, the weighting factor had a

negligible influence on optimum spacing.

In conclusion, criteria's (2), (3) and (4) discussed in the second paragraph in this

chapter have been established. Unique maximums of the objective function are obtained,

and the weighting factor alters the optimum thermoseed spacing in simulations with some

blood flow models.

6.2.3 Effect of Blood Flow Rate

The objective function versus thermoseed spacing for several normal and tumor

blood flow rates are shown in Fig. 6.9 for y,= 0.8. At a moderate rate of tumor blood

flow mt= 0.1 1/min-kg, optimum spacing in the array of 48.1 C-type thermoseeds

decreased from 12.8 to 11.7 mm (Table 6.3) as normal tissue blood flow mn increased

from 0.1 to 0.5 I/min-kg (Fig. 6.9a). However, at the same rate of tumor blood flow (mt

= 0.1 1/min-kg), optimum spacing of 54.1 C-type thermoseeds increased slightly from

12.7 to 13.5 mm as normal tissue blood flow increased from 0.1 to 0.5 1/min-kg.

Likewise, optimum spacing of 60.1 C-type thermoseeds increased from 11.2 to 13.5 mm

over an increase in normal tissue blood flow m, from 0.1 to 0.5 1/min-kg. Similarly, the

optimum spacing of thermoseeds in the differentially-loaded design increased from 11.7

to 13.5 mm.

The optimum spacing in the array of 48.1 C-type thermoseeds at a high rate of

tumor blood flow mt of 0.25 1/min-kg was below 9 mm for normal tissue blood flow
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Figure 6.9 Effect of blood flow on objective function F with y= 0.8 and tumor survival model B.
Simulations were performed with an array of bare thermoseeds with operating temperatures of (a) 48.1 C,
(b) 54.1 C, and (c) 60.1 C and (d) for the differentially-loaded thermoseed design. Curves are shown for
blood flow models 1 through 6 where mn (l/min-kg) is labeled and with tumor blood flow of mt = 0.1
I/min-kg (solid lines) and mt= 0.25 I/min-kg (dashed lines).

rates of 0.25 to 1 I/min-kg (Figs. 6.5a, 6.6a and 6.7a). However, in arrays of 54.1 C-

and 60.1 C-type thermoseeds and in the differentially-loaded design, the optimum seed

spacing was approximately 11, 12.7 and 10.3 mm, respectively, over normal tissue

blood flows between 0.25 and I 1/min-kg.

Several conclusions can be made from the effect of blood flow on the objective

function. First, smaller objective functions are associated with higher tumor blood flow
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rates. Second, high tumor blood flow rates (mt = 0.25 /min-kg) generally yield optimum

thermoseed spacings that (1) increase with arrays of higher operating temperature

thermoseeds and (2) are somewhat independent of normal tissue blood flow rates. Last,

lower tumor blood flow rates (mt = 0.1 l/min-kg) generally yield optimum thermoseed

spacings that decrease with arrays of lower operating temperature thermoseeds and

increasing normal tissue blood flow.

6.2.4 Effect of Thermoseed Operating Temperature

The objective function F versus thermoseed spacing 1 for square arrays of 48.1 C-,

54.1 C-, 60.1 C-type thermoseeds are shown in Fig. 6.10. Larger objective functions

correlate with arrays containing higher operating temperature thermoseeds. Wide

variations in thermoseed spacing (between 11 and 14 mm) give optimal values of the

objective function for an array of 60.1 C-type thermoseeds (Fig. 6.10a). There is

uniqueness of the optimal value of F in the curves in Fig. 6.10b where clearly-defined

maximums of the objective function are achieved with all four types of arrays in a tumor

blood flow of mt = 0.25 1/min-kg. With blood flow model 7, there are unique values of

the optimal F with the 60.1 C-type array and the differentially-loaded array (Fig. 6.10c).
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Figure 6.10 Objective function F versus thermoseed spacing 1 for arrays of thermoseeds with operating
temperatures of 48.1 C, 54.1 C and 60.1 C and the differentially-loaded array. Objective functions were
computed with tumor survival model B and with y = 0.8. Simulations were performed with (a) blood
flow model 2, (b) blood flow model 5 and (c) blood flow model 7 (see Table 6.1).

6.2.5 Optimum Thermoseed Designs based on Objective Function

The optimum thermoseed designs based on maximizing the objective function are in

Table 6.4. The array of 60.1 C-type thermoseeds maximized the objective function for all

Y's with blood flow models 3 through 7. Although the differentially-loaded design was

the optimum design in five simulations (Table 6.4), the objective function of the 54.1 C-
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type design was close to the differentially-loaded design in these five simulations. Thus

the optimum thermoseed design is somewhat dependent on the blood flow model. It is

therefore critical that the blood flow model approximate the actual blood flow as close as

possible.

Table 6.4 Optimum Thermoseed Design based on Objective Function

Blood Flow Optimum Thermoseed Design

Model =0.2 y=0.5 y= 0.8 'Y=lI
1 54.1 Diff-Load Diff-Load 60.1
2 Diff-Load Diff-Load Diff-Load 60.1
3 60.1 60.1 60.1 60.1
4 60.1 60.1 60.1 60.1
5 60.1 60.1 60.1 60.1
6 60.1 60.1 60.1 60.1
7 60.1 60.1 60.1 60.1

6.3 Therapeutic Assessment of Objective Function

This section discusses the performance of the objective function relative to

temperature-based criteria including (1) the percentage of tumor between lower and upper

temperature limits (Sec. 6.3.1); and (2) the minimum tumor temperature ( tumor) and

the maximum normal tissue temperature (T, , o (Sec. 6.3.2). The suitability if the

objective function is assessed by determining if the fraction of tumor killed, VT, using the

objective function is larger than WVT using temperature descriptors.

6.3.1 Percentage of Tumor Between Lower & Upper Temperature

Limits

The percentage of tumor between lower and upper temperature limits for all four

types of thermoseed designs are in Figs. 6.11 through 6.17. Figures 6.11 through 6.17

contain the results from the simulations with the seven blood flow models.
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The temperature range where the maximum percentage of tumor is heated in

simulations with the optimum thermoseed designs (see Table 6.4) are in Table 6.5.

Notice that for tumor blood flow rates of mt = 0.25 1/min-kg, the largest percentage of

tumor is heated between 43 and 44 C.

Table 6.5 Temperature Range where Maximum Percentage of Tumor is
Between for Optimum Thermoseed Configuration (see Table 6.3)

Blood Flow T Temperature Range (C)
Model =O.2 =O0.5 =O.8 = 1

10. 47-48 46-47 45-46 >48
2 45 - 46 45 - 46 44 - 45 > 48
3 > 48 > 48 > 48 > 48
4 43-44 43-44 43-44 43-44
5 43 -44 43 - 44 43 - 44 43 - 44
6 43-44 43-44 43-44 43-44727 42 '7'42 - < 42 < 42
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Figure 6.11 Percentage of tumor between lower and upper temperature limits versus thermoseed
spacing I for arrays of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and
(d) for the differentially-loaded thermoseed design. Simulations were performed with blood flow model 1
(Table 6.1) and with tumor survival model B (Fig. 5.2). The optimum thermoseed spacing as determined
by the objective function for 7= 0.2, 0.5, 0.8 and 1 are labeled in each figure.
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% Tumor - Blood Flow Model 2
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Figure 6.12 Percentage of tumor between lower and upper temperature limits versus thermoseed
spacing I for arrays of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and
(d) for the differentially-loaded thermoseed design. Simulations were performed with blood flow model 2
(Table 6.1) and with tumor survival model B (Fig. 5.2). The optimum thermoseed spacing as determined
by the objective function for y= 0.2,0.5, 0.8 and 1 are labeled in each figure.
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% Tumor - Blood Flow Model 3
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spacing 1 for arrays of thennoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and
(d) for the differentially-loaded thermoseed design. Simulations were performed with blood flow model 3
(Table 6.1) and with tumor survival model B (Fig. 5.2). The optimum thermoseed spacing as determined
by the objective function for y= 0.2, 0.5, 0.8 and 1 are labeled in each figure.
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% Tumor - Blood Flow Model 4
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Figure 6.14 Percentage of tumor between lower and upper temperature limits versus thermoseed
spacing I for arrays of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and
(d) for the differentially-loaded thermoseed design. Simulations were performed with blood flow model 4
(Table 6.1) and with tumor survival model B (Fig. 5.2). The optimum thermoseed spacing as determined
by the objective function for y= 0.2, 0.5, 0.8 and 1 are labeled in each figure.
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% Tumor - Blood Flow Model 5
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Figure 6.15 Percentage of tumor between lower and upper temperature limits versus thermoseed
spacing 1 for arrays of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and
(d) for the differentially-loaded thermoseed design. Simulations were performed with blood flow model 5
(Table 6.1) and with tumor survival model B (Fig. 5.2). The optimum thernoseed spacing as determined
by the objective function for r= 0.2,0.5, 0.8 and 1 are labeled in each figure.
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% Tumor - Blood Flow Model 6
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Figure 6.16 Percentage of tumor between lower and upper temperature limits versus thermoseed
spacing I for arrays of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and
(d) for the differentially-loaded thermoseed design. Simulations were performed with blood flow model 6
(Table 6.1) and with tumor survival model B (Fig. 5.2). The optimum thermoseed spacing as determined
by the objective function for y= 0.2, 0.5, 0.8 and 1 are labeled in each figure.
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% Tumor - Blood Flow Model 7
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Figure 6.17 Percentage of tumor between lower and upper temperature limits versus thermoseed
spacing I for arrays of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and
(d) for the differentially-loaded thermoseed design. Simulations were performed with blood flow model 7
(Table 6.1) and with tumor survival model B (Fig. 5.2). The optimum thermoseed spacing as determined
by the objective function for -y= 0.2, 0.5, 0.8 and 1 are labeled in each figure.
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6.3.2 Temperature Descriptors

Several temperature descriptors including the maximum tumor temperature

(Tma, tumor), the minimum tumor temperature (Ti,,, t ), the maximum normal tissue

temperature (Tmx, normd), and the average temperature on the boundary of the tumor and

normal tissue (Tam, bonday) are plotted in Figs. 6.18 through 6.24 for blood flow models

1 through 7. Notice that since the simulations were performed with bare thermoseeds,

TM=, tumor is a plot of the warmest thermoseed in the array. In Figs. 6.18 through 6.24,

Tmax, tumor decreases with increasing thermoseed spacing because of the reduced heating

effect that thermoseeds have on each other with increasing thermoseed spacing 1. In Figs.

6.18 through 6.24, the slopes of Tma, na and Tae, , ou ,y are small at narrow I's and

then increase at an 1 between 13 and 14 mm. The modest increase in the slopes of Tma,,,

normal and Tae, boudary at a seed spacing of about 13 or 14 mm was due to the close

proximity of the thermoseed array to the boundary of the tumor and normal tissue. The

slopes of Tmin, tumor were fairly small at I's between 9 and 12 mm, increased at I's

between 12 and 14 mm and then became somewhat flat between l's of 14 and 15 mm.
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Temperature Descriptors - Blood Flow Model 1
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Figure 6.18 Temperature descriptors in tumor and normal tissue versus thermoseed spacing 1 for arrays
of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and (d) for the
differentially-loaded thermoseed design. Simulations were performed with blood flow model 1 (Table 6.1).
The optimum thermoseed spacing as determined by the objective function with y= 0.2,0.5,0.8 and 1 are
labeled in each figure.
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Temperature Descriptors - Blood Flow Model 2
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Figure 6.19 Temperature descriptors in tumor and normal tissue versus thermoseed spacing 1 for arrays
of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and (d) for the
differentially-loaded thermoseed design. Simulations were performed with blood flow model 2 (Table 6.1).
The optimum thermoseed spacing as determined by the objective function with 7= 0.2, 0.5, 0.8 and 1 are
labeled in each figure.
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Temperature Descriptors - Blood Flow Model 3
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Figure 6.20 Temperature descriptors in tumor and normal tissue versus thermoseed spacing 1 for arrays
of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and (d) for the
differentially-loaded thermoseed design. Simulations were performed with blood flow model 3 (Table 6.1).
The optimum thermoseed spacing as determined by the objective function with y= 0.2, 0.5, 0.8 and 1 are
labeled in each figure.
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Temperature Descriptors - Blood Flow Model 4
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Figure 6.21 Temperature descriptors in tumor and normal tissue versus thermoseed spacing I for arrays
of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and (d) for the
differentially-loaded thermoseed design. Simulations were perfoned with blood flow model 4 (Table 6.1).
The optimum thermoseed spacing as determined by the objective function with y= 0.2,0.5;0.8 and 1 are
labeled in each figure.
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Temperature Descriptors - Blood Flow Model 5
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Figure 6.22 Temperature descriptors in tumor and normal tissue versus thermoseed spacing £ for arrays
of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and (d) for the
differentially-loaded thermoseed design. Simulations were performed with blood flow model 5 (Table 6.1).
The optimum thermoseed spacing as determined by the objective function with y= 0.2,0.5,0.8 and 1 are
labeled in each figure.
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Temperature Descriptors - Blood Flow Model 6
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Figure 6.23 Temperature descriptors in tumor and normal tissue versus thermoseed spacing 1 for arrays
of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and (d) for the
differentially-loaded thermoseed design. Simulations were performed with blood flow model 6 (Table 6.1).
The optimum thermoseed spacing as determined by the objective function with y= 0.2, 0.5, 0.8 and 1 are
labeled in each figure.
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Temperature Descriptors - Blood Flow Model 7
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Figure 6.24 Temperature descriptors in tumor and normal tissue versus thermoseed spacing I for arrays
of thermoseeds with (a) 48.1 C-type, (b) 54.1 C-type, (c) 60.1 C-type thermoseeds and (d) for the
differentially-loaded thermoseed design. Simulations were performed with blood flow model 7 (Table 6.1).
The optimum thermoseed spacing as determined by the objective function with y= 0.2, 0.5, 0.8 and 1 are
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6.3.3 Performance of Objective Function

The suitability of the objective function is assessed by determining if the fraction of

tumor killed, WT, using the objective function is larger than VT using temperature

descriptors. Optimal values of thermoseed spacing i in the 60.1 C-type thermoseed

design based on maximizing T tumor and attaining Ta,, a = 45 C and based on the

objective function are shown in Fig. 6.25 for blood flow models 2, 5 and 7. The tumor
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Figure 6.25 Optimum thermoseed spacing lopt of 60.1 C-type thermoseed design based on
maximizing T , tnor, attaining Tmax, norma =45 C and based on maximizing the objective function
for blood flow models (a) 2, (b) 5 and (c) 7.
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fraction killed (VTT) versus thermoseed spacing for the 60.1 C-type design is shown in

Fig. 6.26. The optimum seed spacings lt using the objective function F, maximizing

the Tan, tumor and attaining Tm ,w = 45 C are shown. With blood flow models 2, 5

and 7, 'fT is equal to or higher with ltpt using the objective function than with 4opt using

the temperature descriptors. Indeed, with blood flow model 7, 'VT with Iopt, F is 32%

higher than with lot based on maximizing Trai, tor and attaining T=, normal 45 C.
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Figure 6.26 Fraction of tumor killed (VfT) versus thermoseed spacing 1 for the 60.1 C-type thermoseed
design with blood flow models (a) 2, (b) 5 and (c) 7. The optimum thermoseed spacing as determined by
the objective function with y= .2, .5, .8 and 1 (lopt, F ), the Tmin, tumor and Tmax, normal (lopt, ma=
Tmin, tumor and lopt, Tmax, normal =45 C) temperature descriptors are labeled in each figure.
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The results in Fig. 6.26 are quite significant. They indicate that the objective

function with y= 1 selects the thermoseed spacing that maximizes the fraction of tumor

killed. Moreover, the objective function out performs the method of choosing optimum

thermoseed spacings based on the T,,tumor temperature descriptor. In other words,

smaller (than the maximum) fractions of tumor would be killed if the pretreatment plan

were based on maximizing Trai, tumor than if the pretreatment plan were based on seed

spacings that maximize F with y= 1.

The performance of the objective function is also assessed by how well optimum

thermoseed designs satisfy Ti,,, tumor > Tn., thera. and T,=a, norml < 45 C temperature

criteria. The result of whether T,,n, tumor was greater than Trin, thera. = 42 C for the

optimum thermoseed designs are in Table 6.6. (The results in Table 6.6 are also valid for

Ti, thera. 43 C, except for blood flow model 3 and 'y= 1.)

Table 6.6 Optimum Thermoseed Designs' Heating of Tumor

Blood Flow Tmin, tumor > Tmrin, thera. (42 C)?
Model y=0.2 y= 0.5 y=0.8 y = 1

1 No No No Yes
2 No No No Yes
3 No No No Yes
4 No No No No
5 No No No No
6 No No No No
7 No No No No

The results in Table 6.6 revealed that if the ferromagnetic hyperthermia treatment

plan were designed to maximize q'T (Y= 1), then the optimum thermoseed design satisfied

the Trmin, tumor > Trmin, tihera. = 42 and 43 C temperature criteria in tumors considered to

have a moderate rate of blood flow (models 4 through 7). The Tmgnn, tumor > Tmrnn, thera.



154

temperature criteria was not satisfied in tumors considered to have a high rate of blood

flow (mt = 0.25 1/min-kg). However, none of the four thermoseed designs with blood

flow model 4 through 7 heated the tumor sufficiently to satisfy the Tm.i, tumor > Tmin,

thera. temperature criteria (recall Figg. 6.21 through 6.24). Recall that in simulations with

tumors which had a high rate of blood flow, the weighting factor had no influence on the

optimum thermoseed design since F was not near 1. In still other simulations, the Tmin,

tumor > Traim, thera. temperature criteria was not satisfied with any thermoseed spacing and

an array of 48.1 C-type thermoseeds with a moderate rate of tumor blood flow (see Figs.

6.18a, 6.19a and 6.20a). Further, recall that F was not near 1 in simulations with arrays

of 48.1 C-type thermoseeds (see Figs. 6.2a, 6.3a and 6.4a). Thus it is concluded that the

Tmin, tumor > Tmi, thra,. temperature criteria can be satisfied with the optimum thermoseed

configuration provided thit the objective function with y= 1 is near 1.

The results in Table 6.7 revealed that if the pretreatment plan were designed to

minimize Y'N (y = 0.2), then the optimum thermoseed design would satisfy the T,,a,

nomal < 45 C temperature criteria.

Table 6.7 Optimum Thermoseed Designs' Heating of Normal Tissue

Blood Flow Tmax,normai< 4 5 C ?

Model =.2 y= 0.5 y= 0.8 '-=1=
I yes Yes Yes No
2 Yes Yes Yes No
3 Yes Yes Yes No
4 Yes Yes Yes Yes
5 Yes Yes Yes Yes
6 Yes Yes Yes Yes

7Yes Yes Yes Yes
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6.4 Summary

Several conclusions are made from the simulations in this chapter. The effect of

the tumor survival model (Sec. 6.4.1), the sensitivity of the objective function to

weighting factors and blood flow models (Sec. 6.4.2) and the therapeutic assessment of

the objective function (Sec. 6.4.3) are discussed.

6.4.1 Tumor Survival Model

The difference between the two tumor survival models had a small effect on the

fraction of tumor killed and on the objective function. Average differences in the

objective function over thermoseed spacings between 9 and 15 mm with tumor survival

models A and B were between 0.8 to 12.9% in simulations over all blood flow models

and thermoseed array types. It is concluded that since the hyperthermia cell survival of

the tumor can only be approximated, differences, similar to the two models used herein,

between the actual and the model of tumor cell survival should have a minimal influence

on the objective function.

6.4.2 Sensitivity of Objective Function

Unique and optimal values of the objective function were obtained in the

simulations (Figs. 6.2 through 6.8). The weighting factor had some influence on

optimum thermoseed spacing (Figs. 6.2, 6.3 and 6.4). The weighting factor had an

influence on optimum I's with the 54.1 C- and 60.1 C-type thermoseed designs and the

differentially-loaded design and with blood flow models 1, 2 and 3. With higher blood

flow models (models 4 through 6), and the compartmentalized tumor blood flow model

(model 7), however, the weighting factor had a negligible influence on altering optimum

/'s.
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The optimum thermoseed design is somewhat dependent on the blood flow model

(Table 6.4). The optimum thermoseed design for blood flow models 4 through 7 was the

60.1 C-type design, while the 54.1 C-type design and the differentially-loaded designs

were optimum with blood flow models I and 2. It is therefore critical that the blood flow

model be as accurate as possible.

6.4.3 Therapeutic Assessment of Objective Function

It was shown that the objective function was an effective method of choosing

optimum thermoseed spacings (Fig. 6.26). It was predicted that smaller (than the

maximum) fractions of tumor would be killed if the pretreatment plan were based on

maximizing Tmin, tumor or maintaining T,,.o, , i =45 C than if the pretreatment plan

were based on maximizing F with y= 1.

The Tmin, tumor > Tmin, thera. temperature criteria was satisfied by the optimum

thermoseed designs in simulations with y= 1 and where the blood flow in the tumor was

low (Table 6.6). The Train, tumor > Tmin, thera. temperature criteria was not met, though,

by the optimum thermoseed design with y= 1 and with a high tumor blood flow of mt=

0.25 1/min-kg. However, in simulations with mt = 0.25 I/min-kg, the configurations of

thermoseeds were inadequate to heat the tumor sufficiently to result in F near 1 when Y=

1. Thus it is concluded that the Tmin, tumor > Tmin, thera. temperature criteria can be

satisfied with the optimum thermoseed configuration provided that the objective function

F with y= 1 is near 1. The results in Table 6.7 revealed that if the pretreatment plan were

designed to minimize VfN (i.e., maximize F with y= 0.2), then the optimum thermoseed

design would satisfy the T, o A <45 C temperature criteria.

Since the maximum of the objective function selects seed spacings that maximize

V/T, it is concluded from the simulations on the simple tissue model that the objective
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function is an effective method of selecting optimum thermoseed configurations.

Moreover, in addition to the salient features of the objective function summarized in Sec.

5.4, the objective function may have an advantage over the method of choosing optimum

seed configurations based on Tni,, tumor and T..g, normal temperature descriptors. That

is, since the objective function is a single-valued number which can be used to select an

optimum seed configuration, one avoids having to decide on the therapeutic trade-off

between maximizing Trin, tumor and minimizing T,, , in order to identify an

optimum seed design.
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Chapter 7

Performance of Objective Function with
Patient-Specific Tissue Model

In this chapter a ferromagnetic hyperthermia treatment plan of a tumor in the human

prostate is presented. The finite element software program (FEHT) is used with a human

tissue model (Sec. 7.1) to determine temperature distributions and predict the minimum

tumor temperature (T,,, it.,.) and maximum normal tissue temperatures (Ta, ,wr,,)-

Simulations are performed with several thermoseed combinations and with several

constant and temperature-dependent blood flow models (Sec. 7.2). The simulations are

performed using a model of a tumor in the prostate since this type of tumor is often treated

with brachytherapy. It is shown how the two temperature descriptors (Tin, tumor and

Tnax, hormat) can be used to identify an optimum combination of thermoseeds a priori

(Sec. 7.3). Additionally, the objective function (see Chapter 5) is computed, and it is

shown how the objective function can be used to replace the temperature descriptor

method of identifying the optimum combination of thermoseeds (Sec. 7.3). Some general

comments on the temperatures achieved in tissues with constant and temperature-

dependent blood flow models are discussed in Sec. 7.4. Concluding remarks are made in

Sec. 7.5.

Hyperthermia is usually combined with other forms of cancer therapy. Sometimes

hyperthermia is given with brachytherapy. Brachytherapy uses radioactive implants such
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as 1251 (iodine-125) to kill the malignant tissues. A combined brachytherapy and

hyperthermia treatment might proceed as follows. Initially, catheters are placed surgically

into the tumor. When the ferromagnetic hyperthermia treatment is given prior to

brachytherapy, thermoseeds are placed into catheters and heated thereafter via the

inductive heating method described earlier (Sec. 1.5). Since 60 min of heating at steady-

state temperatures is the normal treatment time, the ideal hyperthermia treatment usually

lasts about 1.17 hours, allowing for 10 mm of transient heating at the beginning of the

treatment. After the hyperthermia treatment, the thermoseeds are removed from the

catheters and replaced by radioactive implants. The brachytherapy treatment can last from

several hours to several days depending on the amount of radiation to be delivered.

7.1 Tissue Model Description

A description of the tissue model used in the simulations is described in Sec. 7.1.1.

The thermal conductivities and blood flows in the tissue model are discussed in Sec.

7.1.2.

7.1.1 Tissue Model

Several two-dimensional, transverse plane, computerized-tomography (CT) images

of the prostate and surrounding normal tissues are shown in Fig. 7.1. Each CT image in

Fig. 7.1 is separated by four millimeters in the z-direction. The z-axis is parallel with the

long axis of the body. Slices 9 through 16 in Fig. 7.1 proceed in a cephalic (toward the

head) to caudal (toward the trunk) direction. The simulations in this chapter are

performed on the cross-section shown by the CT image in Fig. 7.2, which is slice 13 in

Fig. 7.1, a slice near the midpoint of the prostate.



(a) Slice 9 (b) Slice 10

(c) Slice 11 (d) Slice 12

(c) Slice 13 (f) Slice 14

(g) Slice 15 (h) Slice 16

Figure 7.1 Eight computerized tomography (CT) images of a human pelvic region. Slices 9 through
16 are shown in Fig. 7.1a through 7.1h. Each slice is separated by 4 mm in the z-direction. The red-
colored contour is the location of the prostate. Cross-hairs designate locations of catheters.



Figure 7.2 Computerized tomography image of slice 13 in Fig. 7.1e. The red-colored contour is the location of the
prostate and is contour nearest the center of the image. The green-colored contour defines the bladder and is anterior to (or
up from) the prostate. The blue-colored contour defines the rectum and is posterior to (or down from) the prostate. The
red-, green- and magenta-colored cross-hairs are locations of catheters. The white-colored lines are length scales. For
copies of this figure which appear in black and white, see Fig. 7.3 for tissue identification.
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The cross-section in Fig. 7.2 was selected because it had the largest cross-sectional

area of the prostate. In addition, it has been suggested that two-dimensional (versus

three-dimensional) modeling of ferromagnetic hyperthermia tissue models is adequate so

long as the cross-section which is modeled is further than 10 mm from the ends of the

thermoseeds (Chin and Stauffer 1991). Also, two-dimensional modeling is justified so

long as the thermoseeds are longer than 30 mm and the cross-section is the centrally-

located plane (Chen et al. 1991). The cross-section in Fig. 7.2 and thermoseed lengths

used in this study satisfy these requirements.

In Figs. 7.1 and 7.2, the red-colored contour defines the tumor-containing prostate.

The red-colored contour is the contour closest to the center of the image. The bladder is

anterior to the prostate (or up from the prostate in Figs. 7.1 and 7.2) and is defined by the

green-colored contour. The rectum is posterior to the prostate (or below the prostate in

Figs. 7.1 and 7.2) and is outlined by the blue-colored contour. The black-colored area

within the bladder is the location of the in-dwelling catheter (see slices 9 through 11 in

Fig. 7.1). The in-dwelling catheter is placed into the bladder via the urethra prior to

treatment for urinary drainage. Since the bladder in Fig. 7.2 is devoid of black- or white-

colored areas, the in-dwelling catheter has exited the body superior to the cross section in

Fig. 7.2. During the CT scan, the bladder in slices 9 though 13 is filled with liquid.

During treatment, however, the bladder will drain due to gravity and will be smaller and

will have no urine inside. Thus the bladder region will be modeled as a region of muscle

tissue.

The black-colored area near the center of Fig. 7.2 is the location of an air pocket in

the rectum (i.e., gas). This air pocket is small relative to the cross-sectional area of the

rectum and other tissues. The air pocket is approximately 10 mm in length (z-direction)

as evident by CT slices 13, 14 and 15 in Fig. 7.1. In the simulations the air pocket will
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be assumed to be rectum and will have thermal properes identical to those of the rectum.

By modeling the air pocket as rectal material, the predicted temperature distributions will

be lower than they would have been had the air pocket been modeled as a distinct region.

In other words, air pockets behave thermally as insulators.

The cross-hairs in Figs. 7.1 and 7.2 are locations of catheters. The red-colored

cross-hairs designate catheters which are approximately parallel to the z-axis, the

magenta-colored cross-hair designates the center catheter which is used as a reference in

brachytherapy treatment planning, and the green-colored cross-hairs are catheters that

have been angled appropriately so as to follow the boundary of the prostate in the third

dimension (or z-direction). The locations of 19 catheters are shown in Fig. 7.2. The

catheter locations were chosen by medical physicists and the oncologist to obtain an

adequate iso-dose distribution of radiation in the prostate. Ten of these catheters are

located within the prostate and nine are located within the surrounding normal tissues. Of

the catheters in the normal tissues, three are in the bladder and six are located in the

rectum and surrounding fatty tissue which is posterior to the prostate. Usually at least

two catheters are used for measuring temperatures during the hyperthermia treatment.

One of these two catheters is typically located near the center of the prostate, while the

other is in the prostate and located near the boundary of the prostate and normal tissues.

The maximum number of catheters, therefore, which could be loaded with thermoseeds is

17. In the simulations in this chapter, however, the nine catheters in the normal tissues

will not be loaded with thermoseeds. Thus a study of the two-dimensional temperature

distributions produced by thermoseeds located only within the prostate is possible. In the
remainder of this chapter, the mor-containing prostate will be referred to simply as the

twnmor.
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Several steps were performed to transfer the tissue contours and catheter locations

shown in Fig. 7.2 into the FEHT program. First, the CT image was scanned digitally

with DeskScan (Hewlett-Packard Co., Palo Alto, CA) and a Macintosh II computer.

DeskScan created a PICT file which was later opened within the software drawing

program McDraw Pro (Claris Corp., Santa Clara, CA). Within McDraw Pro, the

polygon feature was used to trace the tissue contours, catheter locations and the vertical

length scale shown in Fig. 7.2. These tracings were then transferred into FEHT via the

Macintosh clipboard feature.

Using the traces created by McDraw Pro as a template, the scale of the tissue model

was specified and the contours of the tissues were drawn with FEHT (recall Sec. 2.3)

(Fig. 7.3). Earlier studies and clinical experience have shown that often, the inner core of

the tumor is a tough, fibrous tissue and may have a blood flow that differs vastly'from the

outer periphery of the tumor. Thus the tumor was modeled as two distinct regions

consisting of an inner core and an outer periphery. The boundary between the core and

periphery was arbitrarily chosen. A finite element mesh in the normal tissues was then

created using algorithms and menu items within FEHT (Sec. 2.3).

Using the 'Add Seed' pull-down menu item in FEHT (Sec. 3.4), models of eight

thermoseeds within catheters (0.35 mm-wall) (Sec. 3.2.3) were placed within the tumor

at the location of the cross-hairs. The locations of the eight thermoseeds are the black-

colored circles 1 through 5, 7, 9 and 10 in Fig. 7.3. The locations of the two

temperature-monitoring catheters are shown by circle 6 in the tumor periphery and circle 8

in the tumor core (Fig. 7.3). The finite element mesh in the tumor was created thereby

completing the entire finite element mesh of the tissue model. The complete finite element

mesh of the tissue model and thermoseeds is shown in Fig. 7.4.
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Figure 7.3 Contours of tissues and locations of thermoseeds used in simulations. The tumor (i.e., prostate) is
modeled as two distinct regions consisting of an inner core and an outer periphery. The black-colored circles 1-5, 7, 9 and
10 in the outer periphery of the tumor are the locations of the thermoseeds. Circles 6 and 8 are the locations of the
catheters used for temperature measurements. The tissue contours and simulated thermoseeds were created with FEHT
using the CT image of Fig. 7.2 as a template.
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Figure 7.4 The finite element mesh of the tissue system shown in Fig. 7.3. The finite element mesh was created
with FEHT. The mesh contains models of eight thermoseeds and two catheters for thermometry. There is a convection
boundary condition on the outer surface with h = 5 W/m2-C and Tamb = 25 C. The thermoseeds have a heat flow P' at
their boundaries as described earlier (Fig. 3.5).
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FEHT was used to solve Eqs. 2.2 and 5.6 to predict the temperature distribution

and compute the objective function. The dodecagonal thermoseed model was used in the

simulations (Sec. 3.2.3). The eight simulated thermoseeds had a heat flow P' at their

boundarieg as described earlier (Fig. 3.5 and Eq. 4.5d). The two simulated catheters

used for monitoring temperatures were modeled as thermoseeds without energy

generation. Boundary conditions for the tissue model included a convection boundary on

the outer surface with h = 5 W/m2-C and Ta =25 C. All tissues in the model were

perfused by blood at Tb = 37 C. The thermal conductivities and blood flows of all tissues

in the model are discussed in Sec. 7.1.2.

7.1.2 Thermal Conductivity and Blood Flow

The thermal conductivities of tumors have been measured. Jain et al. (1979)

measured the thermal conductivity of a tumor of mammary origin-Walker 256 carcinoma

using a noninvasive probe technique. Bowman (1980) has also measured thermal

conductivity of tumors using invasive-probe techniques. These thermal conductivities are

compiled in Table 7.1.

Blood flow rates of various animal and human tumors at normal body temperature

are given in Table 7.2. In general, the average perfusion rates of tumors are less than

those of normal tissues, with the exception of a canine lymphosarcoma.
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Table 7.1 Thermal Conductivity of Various Animal & Human Tumors
(A reprint of Table 3 in Chapter 16 of Heat Transfer in Medicine & Biology,

Shitzer & Eberhart, eds., Plenum Press, 1985.)

Thermal Conductivity,

Species Tumor Type kt (W/m-C)
Ra__t Walker 256 carcinoma 0.32
Human Breast

Normal atrophic tissue
Scirrhous carcinoma
Mucinous (colloid) carcinoma

0.499
0.397
0.527

Colon
Normal 0.556
Metastatic colonic carcinoma 0.556

Liver
Normal 0.572
Metastatic colonic carcinoma 0.52
Normal 0.508
Metastatic pancreatic cancer 0.562

Lung
Normal 0.518
Squamous cell 0.666

Pancreas
Normal 0.345
Metastatic carcinoma 0.478
Normal 0.468
Metastatic gastric cancer 0.492

Other

0 1.
0.581
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Table 7.2 Blood Flow Raes of Animal & Human Tumors
(A reprint of Table 4 in Chapter 16 of Heat Transfer in Medicine & Biology,

Shitzer & Eberhart, ed&, Plenum Press, 1985.)

Blood Flow, m
Tumor Species (I/min-kg)

Hepatoma 5123 Rat 0.1-0.17
Novikoff hepatoma Rat 0.02 - 0.05
Walker 256 carcinoma Rat 0.03 - 0.1
Walker 256 carcioma Rat 0.16 - 0.48
Sarcoma Rat 0.04 - 0.21
Sarcoma Rat 0.22 - 0.58
DS-carsinosarcoma Rat 0.07 - 0.32
Yoshida sarcoma Rat 0.07
Nerve and brain tumors Rat 0.44 - 0.79
Guerin carcinoma Rat 0.20 - 0.21
DMBA-indxed Rat 0.025

adenocarcinoma
Melanoma Hamster 0.6
Cervical carcinoma Hamster 0.22
Sarcoma Mouse 0.01 - 0.22
Sarcoma Mouse 0.04 - 0.19
Sarcoma Mouse 0.07 - 0.14
Mammary carcinoma Mouse 0.01 - 0.17
VX-2 carcinoma Rabbit 0.24 - 1.13
Lymphosarcoma Dog 0.63 - 3.4
Lymphoma Human 0.34
Anaplastic carcinoma Human 0.15
Differentiated tumors Human 0.23
Liver carcinoma Human 0.12

The numerical values of tissue thermal conductivity and blood flow used in the

simulations are shown in Table 7.3. The thermal conductivities of the tissues are

assumed to be independent of temperature over the hyperthermia temperature range. The

thermal conductivity of the tumor (kt = 0.64 W/m-C) was assumed to be equal to muscle

tissue (Appendix 2 in Shitzer and Eberhart 1986) and is near that of the squamous cell of

the lung (Table 7.1).
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Table 7.3 Thermal Conductivity and Blood Flow of Tissues

Thermal Volumetrc Tissue Density, Perfusion,
Tissuelaera Conductivity, kt Blood Flow, m Pot WbCb

Type (W/m-C) (VImin-kg) (kg/m3) (W/m3-C)

Bladder* (empty) 0.64 Table 7.4 1080 Fig. 7.6a
(muscle tissue)

Rectum* 0.64 - -

Bone 1.16(1) 6.7e-3 (5) 1500(1) 690
Fat 0.19(2) 1.84e-2 (6) 850(1) 1078
Muscle 0.64(3) Table 7.4 1080 (1) Fig. 7.6a
Tumor*

Core 0.64 Table 7.4 1080 Fig. 7.6b
Periphery 0.64 Table 7.4 1080 Fig. 7.6c

Catheter 0.34(4) - - -

*Assumed to have the properties of muscle tissue.
1 - Gordon et al. 1976 4 - Clay Adams Co. 1991
2 -Cooper and Trezek 1971 5 - Root 1963
3 - Nevins and Darwish 1970 6 - Nielsen 1972

It is known that blood flow in tissues can depend strongly on temperature. Song et

al. (1984) has plotted the relative change in blood flow in the muscle of rats and that in

animal tumors after heating for 30, to 40 min at various temperatures (Fig. 7.5). The

relative change in blood flow is the ratio of blood flow at elevated temperatures to the

blood flow before heating.

The relative change in blood flow (Fig. 7.5) was transformed into blood flow with

dimensional units by assuming that the volumetric flow rate of blood per unit mass, m in

Eq. 2.1, in muscle before heating is 0.027 1/min-kg (Lassen et al., 1964). The mass flow

rate of blood per unit volume multiplied by the specific heat of blood, WbCb in Eq. 2.2,

was then determined by multiplying m by the density Pt of muscle tissue (1080 kg/n 3),

the density Pb, of blood (1060 kg/in3 ) and the specific heat cb, of blood (3900 J/kg-C).
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Calculations like this were performed to detmine tissue perfusion values WbCb in the last

column of Table 7.3. As will be seen, similar calculations were performed to determine

the tissue perfusion values in Fig. 7.6 from the dat in Fig. 7.5.

Models of temperature-dependent blood flow rates in the muscle and tumor were

obtained from approximations of the data in Fig. 7.5. The core of a tumor is generally

believed to be a necrotic region and thus to have a low rate of blood flow. Since the

periphery of a tumor usually has more blood vessels than the core, the tumor periphery is

generally considered to have a higher rate of blood flow than the tumor core. Thus the

9

Muscle
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o . 5 -

Tumor
.9"> 3
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Figure 7.5 Temperature-dependent changes in the relative blood flow rates for
muscle and animal tumors (A reprint of Fig. 3 in Song et al. 1984).

temperature-dependent blood flow model for the core of the tumor was obtained by

approximating the lower edge of the shaded region in Fig. 7.5 and is shown in Fig. 7.6b.

The temperature-dependent,/low-rate blood flow model of the tumor periphery was ob-
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Figure 7.6 Models of temperature-dependent perfusion for (a) muscle tissue and the high-rate blood
flow of the tumor periphery, (b) the tumor core and (c) low-rate blood flow of the tumor periphery. The
circles are data from the curves in Fig. 7.5 and the solid lines are approximations of that data. The
perfusion WbCb was obtained by determining the maximum of (a) two curve fits or (b and c) a curve fit
and a constant as shown above each figure.
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tained by approximating the upper edge of the shaded region in Fig. 7.5 and is shown in

Fig. 7.6c. The temperature-dependent blood flow model for normal muscle tissue and the

temperature-dependent, high-rate blood flow model of the tumor periphery were

determined by approximating the curve for muscle tissue in Fig. 7.5 as shown in Fig.

7.6a. The numerical values of the blood flow in the tumor core and periphery are within

the range of the blood flows shown in Table 7.2.

The data in Figs. 7.6a, b and c are approximated by curve fits. The perfusion term

WbCb for muscle tissue was obtained by determining the maximum of two curve fits. The

perfusion term for the tumor was obtained by determining the maximum of a curve fit and

a constant. The expressions for evaluating the perfusion term are shown above Figs.

7.6a, b and c. These expressions are used in an algorithm within FEHT (Klein et al.

1988) to evaluate the local blood flow as a function of temperature.

7.2 Simulations

A study was performed to determine an adequate choice for the discretization of the

finite element mesh. Results from the discretization study are discussed in Sec. 7.2.1.

Simulations were performed on the tissue model shown in Fig. 7.3 for six blood flow

models and seven thermoseed combinations. The blood flow models are discussed in

Sec. 7.2.2, and the thermoseed combinations are presented in Sec. 7.2.3.

7.2.1 Finite Element Mesh Discretization

The temperature distribution computed with the finite element technique will

depend on the level of discretization of the finite element mesh. An adequate

discretization of the finite element mesh shown in Fig. 7.4 was determined by studying

the effect of successively smaller discretizations. The smaller discretizations were
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concentrated in the vicinity of the thermoseeds, the tumor, and the boundary between the

tumor and normal tissues. Simulations were performed with meshes of 1680, 1804 and

1904 finite elements. Simulations were conducted with uniform blood flow rates of m =

0.027 and 0.27 /min-kg in the muscle and tumor. All eight thermoseeds (1-5,7, 9 and

10 in Fig. 7.3) had operating temperatures of 54.1 C in simulations with the blood flow

of 0.027 I/min-kg and 60.1 C in simulations with the blood flow of 0.27 I/min-kg.

The effect of finite element discretization on the solution was evaluated. The

percentage of tumor above temperatures between 42 and 50 C is shown in Fig. 7.7. The

maximum and minimum tumor temperature (T,, tmo, and T,,i, t.,m), the maximum

normal tissue temperature (T,, , ) and the average temperature of the tumor (Te,

t.,o) and the average temperature on the boundary between the tumor and normal tissues

(Te, bo ) are illustrated in Fig. 7.8. Last, the objective function is displayed in Fig.

7.9. A mesh of 1904 elements satisfies the requirement for convergence of the numerical
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48
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(a) m = 0.027 I/mI-kg (b) m = 0.27 /mn-kg

Figure 7.7 Effect of finite element mesh discretization on percentage of tumor greater than
temperatures between 42 and 50 C. The simulations were performed with a uniform blood flow rate in
the tumor and muscle tissue of (a) 0.027 l/min-kg and (b) 0.27 !/min-kg. Thermal conductivity and
blood flow in other tissues are in Table 7.3. Operating temperatures of all thermosed were (a) 54.1 C
and (b) 60.1 C.
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solution, since, at this discretization, all curves in Figs. 7.7, 7.8 and 7.9 are flat. The

simulations in this chapter are, therefore, performed with a mesh of 1904 finite elements.
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In contrast to the finite element mesh in Fig. 7.4, it would have been possible to

perform the simulations in this chapter with an outer-edge boundary just a few millimeters

greater than the Tb contour. Isotherms are shown in Fig. 7.10 for a simulation with 60.1

C-type thermoseeds and a constant blood flow model (seed blood flow model 2 in Sec.

7.2.2). The Tb (= 37 C) contour is approximately 70 mm from the outer edge of the

tumor. If the simulation had been performed with an outer edge slightly larger than the Tb

contour, the outer-edge boundary condition would have been Toer suface = Tb.

Figure 7.10 Isotherms (C) from a simulation with 60.1 C-type thermoseeds and blood flow model 2
(see Sec. 7.2.2). Thermal conductivity and blood flow in other tissues are in Table 7.3. The isotherms
were created with FEHT. The mesh contains eight simulated thermoseeds and two catheter models for
thermometry. There is a convection boundary condition on the outer surface with h = 5 W/m2 -C and
Tamb = 25 C (see Fig. 7.4). The thermoseeds had a heat flow P' at their boundaries as described earlier
(Fig. 3.5 and Eq. 4.5d).
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7.2.2 Blood Flow Models

Simulations were performed with six blood flow models16 . Blood flow models 1

through 4 assume that blood flow is independent of temperature while blood flow models

5 and 6 are temperature-dependent (Table 7.4). Blood flow model descriptions are:

Blood flow model 1
Assumes the blood flow in the tumor is a constant mt = 0.027 1/min-kg (which is
equivalent 17 to WbCb = 2009 W/m3-C) and equal to the blood flow in normal
muscle tissue at body temperature of Tb (= 37 C).

Blood flow model 2
Studies the effect of a necrotic tumor core. The blood flow in the tumor core is a
constant mt =0.008 /min-kg (equivalent to Wbcb = 600 W/m3 -C) which is equal
to the flat, lower portion of the curve in Fig. 7.6b.

Blood flow model 3
Studies the influence of highly perfused, constant blood flow in normal muscle
tissue. The blood flow in the muscle tissue is nine "times higher than in the tumor
and is equal to the maximum of the curve in Fig. 7.6a (m,.cse = 0.243 1/min-kg
which is equivalent to WbCb = 18,081 W/m 3-C).

Blood flow model 4
Investigates the effect of highly perfused muscle tissue and tumor periphery. The
blood flow in the tumor periphery is a constant mt, priphery = 0.243 1/min-kg and
assumed equal to that in the muscle tissue.

Blood flow model 5
The blood flows in the tumor core, tumor periphery and normal muscle tissue are
temperature-dependent. Models for the blood flow are shown in Fig. 7.6a, b,
and c. The tumor periphery has a low-rate blood flow model (Fig. 7.6c)

Blood flow model 6
The blood flows in the tumor core, tumor periphery and normal muscle tissue are
'temperature-dependent. Models for the blood flow are shown in Fig. 7.6a and b.
The tumor periphery has a high-rate blood flow model and is identical to that of
the normal muscle tissue (Fig. 7.6a).

1 6The blood flow models used in simulations in this chapter differ from the seven blood flow models used
previously in Chapter 6.
17Assuming that Pt = 1080 kg/n 3, Pb = 1060 kg/rn 3 and Cb = 3900 J/kg-C.
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Table 7.4 Tumor and Normal Muscle Blood Flow Models Used in Simulations
(The blood flow in all odtr tissues is given in Table 7.3.)

Blood Flow Rate (l/min-kg)

Blood Flow Tempeatum Tumor Normal Muscle

Model Dependent. Core, mt, core Per., mt, periph. Tissue*, mn

1 No 0.027 0.027 0.027

2 No 0.008 0.027 0.027

3 No 0.027 0.027 0.243
4 No 0.027 0.243 0.243

5 Yes Fig. 7.6b Fig. 7.6c Fig. 7.6a

6 Yes Fig. 7.6b Fig. 7.6a Fig. 7.6a

* The blood flow rate in muscle was taken from Lassen et al., 1964.

Blood flow models 1 through 6 were designed to study the influence of blood flow

on temperature distributions and the objective function. The blood flow in model 1 is

constant and assumed equal to the blood flow at normal body temperature. Results from

simulations with blood flow model 2 will be compared with those of model 1 to study the

effect of modeling the tumor core with a blood flow rate that is lower than the tumor

periphery (Sec. 7.4.1). The blood flow in normal muscle tissue of model 3 is constant

and equal to the maximum of the temperature-dependent blood flow rate in normal muscle

tissue of model 5. Results from the simulations of blood flow model 3 will, therefore,

provide an upper limit of the cooling effect expected from a constant, high rate of blood

flow. Results from simulations with model 5 will be compared with those of model 3 to

assess the influence of temperature-dependent versus constant, highly-perfused normal

muscle tissue (Sec. 7.4.2.1). The blood flow in the normal muscle and tumor periphery

of blood flow model 4 is equal to the maximum of the temperature-dependent blood flow

in normal muscle tissue. Results from simulations with model 6 will be compared with
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those of model 4 to study the effect of modeling temperature-dependent blood flow versus

constant, highly-perfused blood flow in normal muscle tissue and the tumor periphery

(Sec. 7.4.2.2).

The results from the simulations with the six blood flow models are studied

independently and comparatively to elucidate the effects of various blood flow models on

temperature distributions and the objective function. However, the blood flow in real

tissue systems is generally believed to be temperature-dependent. Thus blood flow

models 5 and 6 are considered the models which most closely represent the blood flow in

real tissue systems 18.

7.2.3 Thermoseed Combinations

Simulations were performed with seven combinations of thermoseeds (Table 7.5).

Combinations 1, 4 and 7 have thermoseeds with operating temperatures of 48.1, 54.1 and

60.1 C, respectively. Combination 2 contains four 48.1 C-type thermoseeds and four

54.1 C-type thermoseeds. Combination 2 is considered the differentially-loaded design

because it has thermoseeds with different operating temperatures. The four 54.1 C-type

thermoseeds in combination 2 were placed in catheters near the four comers of the tumor

periphery (locations 1, 4, 5 and 9 in Fig. 7.3). Placing high-temperature versus low-

temperature thermoseeds in the corners of the tumor may increase tumor temperatures

beyond the outer edge of the thermoseed array. Combination 3 is studied to determine

whether a design of thermoseeds at one temperature, the average temperature of
thermoseeds in combination 2, performs better than the differentially-loaded design of

18Blood~ flow models 5 and 6 will appear in bold type in the remainder of this chapter as they are
considered the models which most closely represent the blood flow in real tissues.



180

Table 7.5 Thermoseed Combinations used in Simulations

Them'oseed Th moeed Operating Temperature*

Combination 1 2 3 4 5 7 9 10

1 48.1 48.1 48.1 48.1 48.1 48.1 48.1 48.1

2 54.1 48.1 48.1 54.1 54.1 48.1 54.1 48.1

3 Average teperat of seed combination #2 "

4 54.1 54.1 54.1 54.1 54.1 54.1 54.1 "54.1

5 60.1154.1154.1160.1160.11 54.1 60.1 54.1

6 Average temperature of seed combination # 5

7 60.1 160.1.60.i1160.160.1 60.11 60.1160.1
* Refer to Fig. 7.3 for thermoseed location.

combination 2. Combination 5 is another differentially-loaded design which has four

54.1 C-type thermoseeds and four 60.1 C-type thermoseeds. As with combination 2, the

four higher operating temperature thermoseeds (60.1 C-type) of combination 5 were

placed in catheters near the four comers of the tumor periphery. Thermoseed combination

6 is studied to determine whether a design of thermoseeds at an one temperature, the

average temperature of thermoseeds in combination 5, performs better than the

differentially-loaded design of combination 5. The temperatures of the thermoseeds in all

combinations were obtained with the Newton-Raphson technique 19 (Sec. 4.1.1.1).

7.3 Performance of the Objective Function

This section is divided into two subsections. Section 7.3.1 discusses the effect of

the tumor survival model on the objective function while Sec. 7.3.2 describes the

influence of the weighting factor on the objective function. The effects of the blood flow

l9 An~j alternative method for determining thermoseed temperatures is the use of the variable-property
routine in FEHT (Sec. 4.3.2.1).
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models and thermoseed combinations on the objective function are provided in both

subsections. A therapeutic assessment of the objective function is discussed in Sec.

7.3.3. The effect of blood flow models on the choice of an optimum thermoseed

combination is presented in Sec. 7.3.4.

7.3.1 Effect of Tumor Survival Model

The influence of the tumor survival model on the objective function is shown in Fig.

7.11. Since tumor survival model A is assumed to kill more tissue than model B at the

same temperature, the objective function will be greater for model A than for model B at

the same temperature.

There was little difference in the objective functions determined with tumor survival

models A and B for all blood flow models and thermoseed combinations (Fig. 7.11).

The largest difference was 12.7% and occurred with seed combination 1 and blood flow

model 6 (Fig. 7.1lf) Differences in the objective function between tumor survival models

A and B were caused by thermoseed combinations that heated a small percentage (or

fraction) of tumor to high temperatures. Conversely, in simulations where there was little

difference in the objective function between tumor models A and B, a large percentage of

tumor was heated to high temperatures.

To illustrate the conclusion that differences in the objective function between tumor

survival models A and B arise only with thermoseed combinations that heat a small

fraction of tumor to high temperatures, the result of a simulation is discussed. There was

a 1.8% difference in the objective function between tumor survival models A and B in the

simulation with blood flow model 1 and thermoseed combination 1 (Fig. 7.1 la). The

1.8% difference was the largest difference among all seven combinations and blood flow
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model 1. A plot of the percentage of tumor greater than temperatures between 42 and 50

C is shown in Fig. 7.12b for blood flow model 1. The percentage of tumor greater than

46 C was approximately 4, 42, 48, 84, 95, 95 and 97% for thermoseed combinations 1

through 7, respectively. It is evident that the largest percent difference in the objective

function between tumor models A and B occurred with combination 1 which heated the

smallest percentage (4%) of the tumor above 46 C versus combinations 2 through 7

which heated 42 to 97% of the tumor above 46 C. By similar examinations of the

objective function (Figs. 7.1 lb through 1 if) and percentages of tumor greater than 46 C

for blood flow models 2 through 6 (figure (b) in Figs. 7.13 through 7.17), it can be

shown that differences in the objective function between tumor survival models A and B

arise only with thermoseed combinations that heat a small fraction of tumor to high

temperatures.

The reason for larger differences in the objective function F between tumor survival

models A and B for combinations of thermoseeds that heat a significant fraction of tumor

to low temperatures can be explained. The slope of the tumor survival curve for model A

is b = -2 and has a fractional cell survival as shown in Table 7.6. Alternatively, the slope

of the tumor survival curve for model B is b = -1 and has a fractional cell survival greater

than that of model A (Table 7.6). Thus differences between fractional cell survival of

Table 7.6 Differences in Fractional Cell Survival
Tissue Fractional Cell Survival, Difference in

Temperature, T STumor (Fig. 5.2) Survival Model
(C) Model A Model B (Model B - Model A)
42 1 1 0
43 10-2 10-1 10-1
44 10-4  10-2 10-2

50 10-16 10-8 10-8
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models A and B are larger at lower temeratures, especially between 42 and 44 C, than at

higher temperatures. Therefore differences in the objective function between tumor

survival models A and B increase with thermoseed combinations that heat a large fraction

of tumor to low temperatures.

In general there was little difference in the objective functions determined with

tumor survival models A and B. It is concluded that since the hyperthermia cell survival

of the tumor can only be approximated, differences, similar to the two models used

herein, between the actual and the model of tumor cell survival should have a minimal

influence on the objective function. Thus the results from simulations in the remainder of

this chapter will be shown for tumor survival model B.

7.3.2 Effect of Weighting Factor

Results of the simulations are illustrated in Figs. 7.12 through 7.17 for blood flow

models 1 through 6, respectively. Figures 7.12 through 7.17 contain the effect of the

weighting factor on the objective function and the percentage of normal and tumor tissues

above temperatures between 42 and 50 C. In addition, Figs. 7.12 through 7.17 contain

four temperature descriptors including the (1) maximum tumor temperature (T , tuor),

(2) maximum normal tissue temperature (T,, , norna), (3) average temperature on the

boundary of the tumor and normal tissues (T,e, bonary), and (4) minimum tumor

temperature (T,,n, tumor). Figures 7.12 through 7.17 also contain a table of Tmin. tumor

and Tma, norma and indicate if Tran, tm was greater than Tmi, thra. = 42 and 43 C and

if Tmaj,,gnormat was less than 45 C. The last four columns in Figs. 7.12e through 7.17e
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tabulate the objective function for y= 0.2, 0.5,0.8 and 1 and indicate by bold type which

thermoseed combination maximizes the objective function20 .

The results of the simulations are discussed in Secs. 7.3.2.1 through 7.3.2.6 for

blood flow models 1 through 6, respectively. Results are discussed for all blood flow

models for completeness of the presentation. Recall that blood flow models 5 and 6 are

considered the models which most closely represent the blood flow in reality (see last

paragraph in Sec. 7.2.2). The reader can, therefore, limit his/her reading to Secs. 7.3.2.4

through 7.3.2.6 without losing the context of the discussion. (The results from

simulations with blood flow model 4 in Sec. 7.3.2.4 are interesting and are not observed

with blood flow models 5 and 6).

7.3.2.1 Blood Flow Model 1

The objective function was maximized by thermoseed combination 1 (the array of

48.1 C-type thermoseeds) at y = 0.2, 0.5 and 0.8 (Fig. 7.12c and e). Thermoseed

combination 7 maximized the objective function with y= 1. Notice that as y increases

from 0.2 to 1, the objective function becomes flatter over all thermoseed combinations.

Indeed the objective functions with y= 1 for thermoseed combinations 5 and 6 were only

0.1 and 0.2% lower, respectively, than that of combination 7. Also, the objective

functions with y= 0.8 for combinations 2 and 3 were 1.3 and 2.8% lower, respectively,

than that for combination 1. Nonetheless, lower objective functions correspond to

survival of some fraction of tumor. Thus small differences in the objective function can
be significant.

20 In simulations where values of the objective function differ by a small amount, log F can be used to
expand the scale. After all, when considering the survival of tumor cells, even small differences in F can
be significant
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(d) Temperature Descriptors

Seed Com- Tmin,, tumor' Tm4,,normal Objective Function, F
bination (C) >42C >43C (C) <45C y=0.2 y=0.5 y=0.8 y=1

1 39.8 No No 45.2 No 0.023 0.366 0,709 0.937
2 40.6 No No 46.4 No -0.148 0.276 0.700 0.983
3 40.4 No No 46.7 No -0.174 0.258 0.689 0.977
4 41.0 No No 48.4 No -0.358 0.147 0.652 0.989
5 41.8 No No 49.5 No -0.554 0.028 0.610 0.998
6 41.6 No No 50.1 No -0.558 0.025 0.608 0.997
7 42.2 Yes No 52.1 No -0.764 -0.103 0.558 0.999

(e) Summary of Results
Figure 7.12 Results of simulation with blood flow model 1. Results are presented as (a) % normal
tissue above 42, 43, 44 and 45 C, (b) % tumor tissue above 42, 44, 46, 48 and 50 C, (c) effect of
weighting factor on objective function, (d) maximum, minimum and average temperatures achieved, and
(e) a table comparing the optimum thermoseed combination based on temperature descriptors and the
objective function shown in bold type.
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Blood Flow Model 2
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(d) Temperature Descriptors

Seed Com- Tmin, tumor Tmax, normal Objective Function, F
bination (C) >42C >43C (C) <45C y=0.2 y=0.5 y=0.8 y=1

1 39.9 No No 45.6 No -0.025 0.339 0.704 0.947
2 40.7 No No 46.6 No -0.201 0.244 0.689 0.986
3 40.5 No No 47.1 No -0.225 0.227 0.678 0.980
4 41.1 No No 48.9 No -0A11 0.114 0.640 0.991
5 41.9 No No 49.8 No -0.611 -0.007 0.596 0.997
6 41.7 No No 50.6 No -0.615 -0.010 0.594 0.997
7 42.4 Yes No 52.7 No -0.829 -0.143 0.542 0.999

(e) Summary of Results
Figure 7.13 Results of simulation with blood flow model 2. Results are presented as (a) % normal
tissue above 42, 43, 44 and 45 C, (b) % tumor tissue above 42, 44, 46, 48 and 50 C, (c) effect of
weighting factor on objective function, (d) maximum, minimum and average temperatures achieved, and
(e) a table comparing the optimum thermoseed combination based on temperature descriptors and the
objective function shown in bold type.
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(d) Temperature Descriptors

Seed Com- Tmrin,wtumor Tma, normal Objective"Function, F
bination (C) >42C >43C (C) <45C y=0.2 Y=0.5 y=0.8 Y=1

1 37.9 No No 44.9 Yes 0.097 0.357 0.616 0.789
2 38.2 No No 45.8 No 0.027 0.350 0.673 0.888
3 38.3 No No 45.9 No 0.025 0.340 0.672 0.870
4 38.3 No No 48.1 No -0.101 0.287 0.676 0.936
5 38.6 No No 48.8 No -0.193 0.241 0.675 0.965
6 38.7 No No 48.9 No -0.195 0.250 0.674 0.967
7 38.7 No No 51.6 No -0.337 0.153 0.644 0.970

(e) Summary of Results
Figure 7.14 Results of simulation with blood flow model 3. Results are presented as (a) % normal
tissue above 42, 43, 44 and 45 C, (b) % tumor tissue above 42, 44, 46, 48 and 50 C, (c) effect of
weighting factor on objective function, (d) maximum, minimum and average temperatures achieved, and
(e) a table comparing the optimum thermoseed combination based on temperature descriptors and the
objective function shown in bold type.
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(d) Temperature Descriptors

Seed Com- T,min, tumor Tmax, normal Objective Function, F
bination (C) >42C >43C (C) <45C C =0.2 y=0.5 y=0.8 y= 1

1 37.4 No No 40.9 Yes 0.006 0.015 0.024 0.031
2 37.5 No No 41.5 Yes 0.021 0.052 0.083 0.104
3 37.4 No No 41.7 Yes 0.024 0.059 0.095 0.118
4 37.5 No No 42.7 Yes 0.058 0.146 0.235 0.294
5 37.7 No No 43.0 Yes 0.088 0.225 0.362 0.454
6 37.7 No No 43.5 Yes 0.092 0.235 0.379 0.475
7 37.7 No No 44.6 Yes 0.115 0.306 0.497 0.624

(e) Summary of Results
Figure 7.15 Results of simulation with blood flow model 4. Results are presented as (a) % normal
tissue above 42, 43, 44 and 45 C, (b) % tumor tissue above 42, 44, 46, 48 and 50 C, (c) effect of
weighting factor on objective function, (d) maximum, minimum and average temperatures achieved, and
(e) a table comparing the optimum thermoseed combination based on temperature descriptors and the
objective function shown in bold type.
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Blood Flow Model 5
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(d) Temperatmu escriptors

Seed Con- Tmin, tumor Tmax, normal Objective Function, F

bination (C) >42C >43C (C) <45C y=0.2 y=0.5 y=0.8 y=1
1 39.8 No No 46.5 No -0.100 0.294 0,687 0.950
2 40.5 No No 47.5 No -0.251 0.211 0.674 0.983
3 40.4 No No 47.4 No -0.248 0.213 0.677 0.986
4 40.7 No No 50.0 No -0.417 -0.235 0.635 0.985
5 41.2 No No 51.0 No -0.563 -0.362 0.606 0.995
6 41.1 No No 50.9 No -0.567 0.019 0.603 0.995
7 41.4 No No 54.1 No -0.733 -0.085 0.564 0.996

(e) Summary of Results
Figure 7.16 Results of simulation with blood flow model 5. Results are presented as (a) % normal
tissue above 42, 43, 44 and 45 C, (b) % tumor tissue above 42, 44, 46, 48 and 50 C, (c) effect of
weighting factor on objective function, (d) maximum, minimum and average temperatures achieved, and
(e) a table comparing the optimum thermoseed combination based on temperature descriptors and the
objective function shown in bold type.
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Blood Flow Model 6
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(d) Temperature Descriptors

Seed Com- Tmin, tumor Tmax, normal Objective Function, F
bination (C) >42C >43C (C) <45C y=0.2 y=0.5 y=0.8 y=1

1 39.1 No No 43.0 Yes 0.114 0.294 0.474 0.593
2 39.4 No No 43.8 Yes 0.127 0.355 0.582 0.734
3 39.5 No No 43.8 Yes 0.126 0.360 0.575 0.740
4 39.5 No No 44.9 Yes 0.128 0.406 0.683 0.869
5 40.0 No No 46.2 No 0.050 0.388 0.726 0.951
6 40.0 No No 46.3 No 0.040 0.400 0.722 0.955
7 40.3 No No 47.1 No -0.486 0.064 0.614 0.980

(e) Summary of Results
Figure 7.17 Results of simulation with blood flow model 6. Results are presented as (a) % normal
tissue above 42, 43, 44 and 45 C, (b) % tumor tissue above 42, 44, 46, 48 and 50 C, (c) effect of
weighting factor on objective function, (d) maximum, minimum and average temperatures achieved, and
(e) a table comparing the optimum thermoseed combination based on temperature descriptors and the
objective function shown in bold type.
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For thermoseed combinations containing seeds with higher operating temperatures,

the objective function decreased in value for y = 0.2, 0.5 and 0.8 (Fig. 7.12c). The

decline of the objective function with combinations of thermoseeds with higher operating

temperatures is due to an increasing percentage (or fraction) of normal tissue death (Fig.

7.12a). The increase in normal tissue damage with combinations of higher temperature

thermoseeds is also evident by the increase in the maximum temperature of the normal

tissue and average boundary temperature (Fig. 12d).

Optimum thermoseed combinations as selected by the objective function agree with

choices based on T,,, 1, a.or and T,,, a temperature descriptors. For example, if a

hyperthermia pretreatment plan were designed to maximize the fraction of tumor killed

'VT, then the combination of thermoseeds which maximizes the objective function with '

near 1 would be selected as the optimum combination (recall Table 5.1). Notice that

thermoseed combination 7 maximizes the objective function with -y= 1 and achieves the

highest Ti, tumor (= 42.2 C) of all the thermoseed combinations (Fig. 7.12d and e).

Therefore, the same combination of thermoseeds, combination 7, would have been

selected if the goal was to maximize T,," o If, on the other hand, a pretreatment plan

were designed to minimize the fraction of normal tissue damage WN, then the combination

of thermoseeds which maximizes the objective function with 7 = 0.2 or 0.5 would be

selected as the optimum combination. The optimum combination of thermoseeds with y=

0.2 or 0.5 is combination 1. Coincidentally, T., n wr in the simulations with

thermoseed combination 1 is 45.2 C which is above 45 C, but is, nonetheless, the lowest

T,,noral in simulations with all seven thermoseed combinations. Furthermore, the

percentage (or fraction) of normal tissue above temperatures between 42 and 45 C is

minimized with combination 1 versus combinations 2 through 7 (Fig. 7. 12a).
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7.3.2.2 Blood Flow Model 2

The results from simulations performed with blood flow model 2 closely resemble

those of blood flow model 1. The objective function with y = 0.2, 0.5 and 0.8 was

maximized by combination 1 (Fig. 7.13c and e). The objective function with y= 1 was

maximized with thermoseed combination 7.

Optimum thermoseed combinations as selected by the objective function agree with

choices based on Tri, t.., and Tmax, normal temperature descriptors. In other words,

combination 7 would have been selected if a hyperthermia pretreatment plan were

designed to maximize VT or maximize Trai, tor- Thermoseed combination 1 would be

the best design if the pretreatment goal was to minimize W'N or minimize , (Fig.

7.13e).

7.3.2.3 Blood Flow Model 3

With the assumption that a constant blood flow in the muscle tissue is nine times

higher than at normal body temperature, the objective function with 7= 1 was maximized

with thermoseed combination 7. The objective function with 7= 0.8 was maximized by

combination 4, and with 7=0.2 and 0.5, F was maximized by combination 1 (Fig. 7.14c

and e). The condition of a unique maximum for the objective function is just met with y=

0.5, 0.8 and 1.

Optimum thermoseed combinations as selected by the objective function agree with

choices based on Ta, norma and Trin, tumor temperature descriptors. For instance,

thermoseed combination 1 is the only combination which satisfies the Ta, normaI

temperature criteria (<45 C) (Fig. 7.14e). Combination 1 also minimizes the the percent

of normal tissue above temperatures between 42 and 45 C (Fig. 7. 14a). Coincidentally,

combination 1 would be selected on the basis of minimizing '1N by choosing an optimum



194

thermoseed combination with the objective function and y= 0.2 (or 0.5) (Fig. 7.14e). If,

on the other hand, the pretreatment plan were designed to m i T, combination 7 is

the optimum design (Fig. 7.14e). Although combination 7 does not meet the Ti,., t.mor

temperature criteria (> Tri, t,,a. = 42 or 43 C), combination 7 does maximize Tn, twnor

for all seven combinations. If the treatment plan were designed to achieve some balance

between maximizing VT and minimizing WN, then combination 4 which maximizes the

objective function with y= 0.8 is the optimum design.

7.3.2.4 Blood Flow Model 4

In simulations where the blood flow rate in the tumor periphery was assumed to be

constant and approximately nine times higher than the tumor core and equal to the blood

flow in muscle tissue, the objective function was maximized for all y's by thermoseed

combination 7 (Fig. 7.15c and e). The condition of a unique maximum for the objective

function was achieved with all y 's, but the uniqueness over all combinations diminished

as ydecreased.

Optimum thermoseed combinations as selected by the objective function agree with

choices based on T,,, t., and T,.a, nnwr. temperature descriptors. For example, T,,,

normal is less than 45 C with all seven thermoseed combinations (Fig. 7.15d and e).

Further, the percentage of normal tissue greater than 42 C is negligible for all seven

combinations (Fig. 7.15a). Therefore, the optimum thermoseed combination based on

maximizing 'VT and/or minimizing V1N is combination 7. Thus the optimum thermoseed

combination is independent of y'in simulations with blood flow model 4.

It is interesting to note that if the pretreatment plan were based on minimizing Tax,

normal, then combination 1 would have been selected as the preferred design. However,

because the percentage (or fraction) of normal tissue greater than 42 C was negligible for



195

thermoseed combinations 2 through 7, combination 7 was the optimum design for y= 0.2

and 0.5.

7.3.2.5 Blood Flow Model 5

In simulations where the blood flow in the tumor and normal muscle tissue

depended on temperature, the optimum thermoseed design based on maximizing F with y

= 1 is combination 7, and with y= 0.2, 0.5 and 0.8, the optimum is combination 1 (Fig.

7.16c and e). The condition of a unique maximum for the objective function, however,

was barely met with y= 0.8 and 1.

Optimum thermoseed combinations as selected by the objective function agree with

choices based on maximizing Tin, tumor and minimizing Ta, ,, or,, If a pretreatment

plan were designed to minimize 11N (y = 0.2) or maximize /T' (y = 1), thermoseed

combinations 1 and 7, respectively, would be the best choices. Coincidentally, the

optimum thermoseed combinations based on minimizing T or maximizing T,,i.,

would be combinations 1 and 7, respectively.

7.3.2.6 Blood Flow Model 6

In simulations where the blood flow in the tumor and normal tissues depended on

temperature and where the blood flow in the tumor periphery was assumed equal to that

of muscle, the objective function with y= 0.2 and 0.5 was maximized with combination

4. Maximum F's with Y = 0.8 and 1 were achieved with combinations 5 and 7,

respectively (Fig. 7. 17c and e). The condition of a unique maximum of the objective

function is met with y,= 1.

Optimum thermoseed combinations as selected by the objective function agree with

choices based on Tma, nowra' and Tmjn, tumor temperature descriptors. For instance, if a
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pretreatment plan were designed to minimize VN, then the combination of thermoseeds

which maximizes the objective function for ' = 0.2 (or 0.5) would be chosen as the

optimum design. For this design, combination 4 would have been selected since the

objective function was maximized with Y= 0.2 and 0.5. Also, the percentage of normal

tissue above temperatures between 42 and 45 C is small (Fig. 7.17a) and Tis, is

below 45 C for combination 4 (Fig. 7.17d). If instead, the pretreatment plan were

designed to maximize 'VT (y = 1), then thermoseed combination 7 was the optimum

design. Although all thermoseed combinations achieved a T,,, tumor less than T,,i, thra.

(= 42 and 43 C), Trai,, tumor was maximized with thermoseed combination 7. If some

therapeutic balance between 'T and W'N was the desired pretreatment plan, then the

optimum thernoseed combination would be based on maximizing the objective function

for a y between 0.6 and 0.8. In this case, thermoseed combination 5 would be the

optimum design.

7.3.3 Therapeutic Assessment of Objective Function

The suitability of the objective function is assessed by determining if the fraction of

tumor killed (VT) using the objective function is larger than 'VT using temperature

descriptors. The tumor fraction killed for all thermoseed combinations and blood flow

models 5 and 6 are in Fig. 7.18. In simulations with blood flow model 5, optimum seed

combinations based on achieving Tma, , ~ 45 C and maximizing Tmin, tumor are

combinations 1 and 7, respectively. Likewise, combinations 1 and 7 are optimum based
on maximizing the objective function with y= 0.2 and 1, respectively. In simulations

with blood flow model 6, combination 7 is still the optimum based on maximizing Tmn,

tumo and F with y'= 1. Seed combination 4 is optimum based on achieving Tmax, ,rmr/~

45 C and maximizing F with y'= 0.2. Thus for these two blood flow models the temper-
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Figure 7.18 Fraction of tumor killed, W'T , versus thermoseed
combination for blood flow models (a) 5 and (b) 6. Optimum seed
combinations as identified by the objective function F, maximizing Tmin,
tumor and achieving Tm,, norma - 45 C are labeled in each figure.
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ature descriptor method and the objective function predict optimum seed combinations that

kill the same fraction of tumor.

The advantage of the objective function over the temperature-descriptor method in

selecting an optimum seed combination is with pretreatment plans that desire to achieve a

balance between maximizing the tumor fraction killed and minimizing normal tissue

complications. This type of treatment plan is likely to be the most frequently occurring

treatment goal. It would be difficult to select an optimum seed combination based on

achieving a balance between maximizing T,. t,, and minimizing Tmac. normal, short of

an educated guess and intuition. Fortunately, though, the objective function could be

used to select the optimum combination. Instead'of basing the optimum combination on a

therapeutic trade-off between maximizing T, nmranda, o, -45 C, the

single-valued, maximum of the objective function with y=0.8 (or close to 0.8) would

provide an optimum combination. For example, in the simulations with blood flow

model 6, seed combination 5 is the optimum design based on maximizing F with y= 0.8.

Notice that seed combination 5 kills 8.6% more tumor than does combination 4 which

was the optimum design with the criteria that Ta, ,mat -45 C.

In summary, the objective function was an effective method to aid in selecting

optimum combinations of thermoseeds. Moreover, under the assumptions of the model,

use of the objective function in pretreatment planning will ensure that, of all the possible

combinations of thermoseed temperatures, the combination which maximizes the fraction

of tumor killed will be selected as the optimum combination based on the desired

treatment goal.
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7.3.4 Blood Flow Effect on Optimum Thermoseed Combination

The variable which is least known in hyperthermia pretreatment planning is the

blood flow in the tumor and surrounding normal tissues. Six blood flow models were,

therefore, investigated to study the influence of blood flow on optimum thermoseed

combinations. Recall that blood flow models 1 through 4 are constant blood flow

models, while blood flow models 5 and 6, the temperature-dependent models, are

considered the models which most closely represent the blood flow in real tissue systems

(Sec. 7.2.2). The constant blood flow models were studied to compare temperature

distributions in the tissues with those of the temperature-dependent models (Secs. 7.4.1

and 7.4.2).

The optimum thermoseed combinations based on the objective function for all blood

flow models are shown in Table 7.7. Ideally, the optimum thermoseed combination

would be independent of the blood flow model. Discussion in this section will be limited
primarily to y = 0.8 which would be used if the pretreatment plan were designed to

achieve some balance between maximizing V'T and mrin ng 1VN.

Table 7.7 Blood Flow Effect on Optimum Thermoseed Combination

Blood Flow Optimum Thermoseed Combination
Model -0,2 r=0.5 y=0.8 Y=1

1 1 1 1 7
2 1 1 1 7
3 1 1 4 7
4 7 7 7 7
5 1 1 I1 7
6 4 4 5 7

Thermoseed combination 1 is the optimum design with y7=0.8 for blood flow

models 1, 2 and 5, while combinations 4, 7 and 5 are the optimum designs for blood flow
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models 3, 4 and 6, respectively. Notice that for blood flow model 4, thermoseed

combination 7 is the optimum design for all Ys. The optimum thermoseed design with r
= 1 for all blood flow models is combination 7. Unfortunately, the optimum thermoseed

combination with y= 0.2, 0.5 and 0.8 is dependent on the blood flow model as evident

by blood flow models 5 and 6. It is therefore critical that the most accurate blood flow

model be used in determining the optimum thermoseed combination.

7.4 General Comments on Results from Simulations

Discussion on the results from several simulations are presented in this section. The

discussion will be limited mainly to the effect of various blood flow modeling

assumptions on temperatures achieved in the tumor and surrounding normal tissues. A

study of the temperature distributions in simulations with the necrotic tumor core blood

flow model are presented in Sec. 7.4.1. A comparison is made in Sec. 7.4.2 between the

temperature distributions from simulations with temperature-dependent versus constant

blood flow models. Temperature distributions from simulations with the differentially-

loaded thermoseed designs are compared with those from simulations with combinations

of thermoseeds at uniform temperatures (Sec. 7.4.3). The calculation times required to

identify the optimum thermoseed designs are presented in Sec. 7.4.4.

7.4.1 Modeling the Tumor Core as a Region of Low Blood Flow

Modeling the tumor core as a (necrotic) region of constant, low blood flow (blood

flow model 2) versus modeling the tumor with a uniform blood flow equal to normal

muscle tissue at body temperature (blood flow model 1) had a small influence on

temperature predictions. The T,,i, nno was only 0.1 C higher in simulations with blood

flow model 2 versus model 1 for all thermoseed combinations (Fig. 7.19c). The T,,ax.
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norma and Tmax, tumor were between 0.2 and 0.6 C higher with model 2 compared with

model 1 (Fig. 7.19c). The maximum difference in the percentage of normal tissue above

temperatures between 42 and 45 C for model 2 versus model 1 was 0.25% (Fig. 7.19a).

The maximum difference in the percentage of tumor above temperatures between 42 and

50 C for model 2 versus model 1 was 20% (Fig. 7.19b).
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Themoseed Temperature differences between blood flow model 2 and model 1
CombinationF Tmax, tumor Tmrin, tumor Tmax, normal

1 0.4 0.1 0.4
2 0.2 0.1 0.2
3 0.4 0.1 0.4
4 0.5 0.1 0.5
5 0.3 0.1 0.3
6 0.4 0.1 0.5
7 0.6 0.1 0.6

(c) Difference in Temperature Descriptors

Figure 7.19 Effect of modeling the tumor core with a constant, low rate of blood flow (model 2)
versus modeling with a blood flow rate at normal body temperature (model 1). The blood flow in model 1
is constant and uniform in the tumor and surrounding normal muscle (m = 0.027 I/min-kg). The blood
flow in model 2 is constant and equal to 0.008 I/min-kg in the tumor core and 0.027 I/min-kg in the
tumor periphery and normal muscle tissue. The results are presented as (a) the difference in the % of
normal tissue greater than temperatures between 42 and 45 C, (b) the difference in the % of tumor greater
than temperatures between 42 and 50 C and (c) the difference in the Tmax, tumor, Trin, tumor and Tmax,
normal. Thermoseed combinations 1 through 7 are labeled in figures (a) and (b).
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The thermoseed placement in the present study was limited to the tumor periphery.

In other tumors, it is possible that thermoseed(s) would be placed in'the tumor periphery

and the tumor core. Simulations performed on a thermoseed combination consisting of

thermoseed(s) in the tumor periphery and core may have a greater effect on the

temperature distribution than those achieved with thermoseeds only in the tumor

periphery.

7.4.2 Constant versus Temperature-Dependent Blood Flow Modeling

Temperature distributions from simulations with constant blood flow models are

compared with those where the blood flow depended on temperature. Comparisons of

the temperature distributions from simulations where the blood flow in normal muscle

tissue was higher than normal body temperature are discussed in Sec. 7.4.2.1. Similarly,

comparisons of the temperature distributions from simulations where the blood flow in

normal muscle tissue and the tumor periphery were assumed equal and higher than normal

body temperature are presented in Sec. 7.4.2.2.

7.4.2.1 High Blood Flow in Normal Muscle Tissue

Temperature distributions from simulations with blood flow model 3 are compared

with those of blood flow model 5. The blood flow in the tumor of model 3. was constant

and uniform at mt = 0.027 /min-kg and the blood flow in the normal muscle tissue was

constant and nine times higher than in the tumor (0.243 1/min-kg). The blood flow in

model 5 depended on temperature (Sec. 7.2.2).

The temperature descriptors in the tumor and normal tissues are higher with the

temperature-dependent model than the constant blood flow model (Fig. 7.20c). The

Tmx, tumor is between 1.2 and 1.7 C higher over all thermoseed combinations with the
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temperature-dependent blood flow model. The Tmn, tor is between 1.9 and 2.7 C

higher, and the T..., noral is between 1.6 and 2.4 C higher with the temperature-

dependent blood flow model.
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Figure 7.20 Effect of the temperature-dependent blood flow model 5 versus the constant blood flow
model 3. The constant blood flow model has a uniform flow in the tumor (mt = 0.027 I/min-kg) and a
blood flow in surrounding muscle tissue which is nine times higher than the tumor (model 3). The
temperature-dependent blood flow model has a uniform blood flow in the tumor and surrounding normal
muscle tissue at normal body temperature, but increases with temperature to a maximum of 0.047 /min-
kg in the tumor periphery and to a maximum of 0.243 /min-kg in the muscle tissue (model 5). Results
are presented as (a) the difference in the % of normal tissue greater than temperatures between 42 and 45
C, (b) the difference in the % of tumor greater than temperatures between 42 and 50 C and (c) the
difference in the Tmax, tumor, Tmi, tumor and Tmax, normal. Thermoseed combinations 1 through 7 are
labeled in figures (a) and (b).
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The differences in the percentage of normal and tumor tissues above temperatures

between 42 and 50 C between the tp u-dependent and constant blood flow models

are shown in Figs. 7.20a and b, respectively. The differences in the percentage of normal

tissue above temperatures between 42 and 45 C are between 0.1 and 1.6% higher over all

thermoseed combinations with the temperature-dependent model versus the constant

blood flow model. The differences in the percentage of tumor above temperatures

between 42 and 50 C are between 0 and 60% higher in the temperature-dependent blood

flow model.

(a) Blood flow model 3

Figure 7.21a The 42, 44, 46 and 48 C isotherms in and near the tumor for
simulations with (a) the constant, higher blood flow model 3 and (b) the temperature-
dependent blood flow model 5. The simulations were performed with a combination of
60.1 C-type thermoseeds (combination 7). The eight thermoseed and two catheter models
for measuring temperatures are shown by the 10 innermost circles.
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Isotherms in and near the tumor from simulations with the constant and temperature-

dependent blood flow models are shown in Fig. 7.21. The simulation was performed

with combination 7 consisting of 60.1 C-type thermoseeds. Larger fractions of the tumor

and surmounding normal tissues are at higher temperatures with the temperature-dependent

blood flow model.

0 0

(b) Blood flow model 5

Figure 7.21b The 42, 44, 46 and 48 C isotherms in and near the tumor for
simulations with (a) the constant, higher blood flow model 3 and (b) the temperature-
dependent blood flow model 5. The simulations were performed with a combination of
60.1 C-type thermoseeds (combination 7). The eight thermoseed and two catheter models
for measuring temperatures are shown by the 10 innermost circles.
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7.4.2.2 High Blood Flow in Tumor Periphery and Normal Muscle

Tissue

Temperature distributions from simulations with blood flow model 4 are compared

with the results with blood flow model 6. The blood flow in the tumor core of model 4

was constant at 0.027 l/min-kg and the blood flow in the tumor periphery and normal

muscle tissue was constant and nine times higher than the tumor core (0.243 1/min-kg).

The blood flow in model 6 depended on temperature (Sec. 7.2.2).

The temperature descriptors in the tumor and normal tissues are higher with the

temperature-dependent blood flow model than the constant blood flow model (Fig.

7.22c). The Tmax, tumor is between 1.3 and 3.5 C higher over all thermoseed

combinations with the temperature-dependent blood flow model. Likewise, the Tmin,

tumor is between 1.7 and 2.6 C higher and the T,,., ,orma, is between 2.1 and 3.3 C

higher with the temperature-dependent blood flow model.

The differences in the percentage of normal tissue above temperatures between 42

and 45 C between the temperature-dependent model and the constant blood flow model

vary between 0 to 1.25% (Fig. 7.22a). The differences in the percentage of tumor above

temperatures between 42 and 50 C are between 0 and about 65% higher over all

thermoseed combinations with the temp e-dependent blood flow model.

Isotherms in and near the tumor from simulations with the constant and temperature-

dependent blood flow models are shown in Fig. 7.23. The simulation was performed

with combination 7 consisting of 60.1 C-type thermoseeds. Significantly larger fractions

of the tumor and surrounding normal tissues are at higher temperatures with the

temperature-dependent blood flow model.
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Figure 7.22 Effect of the temperature-dependent blood flow model 6 versus the constant blood flow
model 4. The constant blood flow model has a blood flow in the tumor core of 0.027 I/min-kg and a
uniform blood flow in the tumor periphery and surrounding muscle tissue which is nine times higher than
the tumor (0.243 l/min-kg). The temperature-dependent blood flow model has a uniform blood flow in
the tumor and surrounding normal muscle tissue at normal body temperature, but increases with
temperature to a maximum of 0.243 /min-kg in the tumor periphery and normal muscle tissue (model 6).
Results are presented as (a) the difference in the % of normal tissue greater than temperatures between 42
and 45 C, (b) the difference in the % of tumor greater than temperatures between 42 and 50 C and (c) the
difference in the Tmat, tumor, Trin, tumor and Tmam, normal. Thermoseed combinations 1 through 7 are
labeled in figures (a) and (b).
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(a) Blood flow model 4

(b) Blood flow model 6

Figure 7.23 The 42, 44, 46 and 48 C isotherms in and near the tumor for simulations
with (a) the constant, higher blood flow model 4 and (b) the temperature-dependent blood
flow model 6. The simulations were performed with a combination of 60.1 C-type
thermoseeds (combination 7). The eight thermoseed and two catheter models for
measuring temperatures are shown by the 10 innermost circles.
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7.4.3 Differentially-Loaded Thermoseed Design

The temperature distributions achieved with differentially-loaded thermoseed

combinations 2 and 5 were similar to those of uniformly-loaded seed combinations 3 and

6, respectively. Recall that the temperature of the thermoseeds in combinations 3 and 6

are fixed at the average temperature of the differentially-loaded thermoseeds in

combinations 2 and 5, respectively. Comparisons between combinations 2 and 3 and

between combinations 5 and 6 in Figs. 7.12 through 7.17 revealed that there was little

difference in the objective function and in the percentage of normal and tumor tissues

above 42 C. Absolute temperature differences in Tri, tumor and T,,x, normal between

combinations 2 and 3 and between combinations 5 and 6 are shown in Table 7.8. The

difference in Tmi, tumor was between 0 and 0.2 C while the difference in T, , o was

between 0 and 0.8 C.

Table 7.8 Effect of Differentially-Loaded Thermoseed Design on Temperature Descriptors

Absolute Temperature Difference between Thermoseed Combinations
Blood Fow Tmin, tumor ,Tm, normal

Model ICom. 2- Com. 31 Com. 5- Com. 61 ICom. 2- Com. 31 ICom. 5- Com. 61
1 0.2 0.2 0.3 0.6
2 0.2 0.2 0.5 0.8
3 0.1 0.1 0.1 0.1
4 0.1 0 0.2 0.5
5 0.1 0.1 0.1 0.1
6 0.1 0 0 0.1

Isotherms in and near the tumor from simulations with the uniformly-loaded design

5 and the differentially-loaded design 6 are shown in Fig. 7.24. The simulations were

performed with blood flow model 2 (Sec. 7.2.2) since the differences in the temperature

descriptors were the largest with this blood flow model (see Table 7.8). Notice that the

isotherms for both combinations are similar.
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4.7-143.o0v
(a) Uniformly-loaded combination 5

43.0K

,45.8 - .

(b) Differentially-loaded combination 6
Figure 7.24 Isotherms (C) in and near the tumor from simulations with (a) uniformly-loaded
design 5 and (b) differentially-loaded design 6. The simulations were performed with blood flow
model 2 (Sec. 7.2.2).
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7.4.4 Computation Time

The calculation times of FEHT that were required to identify optimum thermoseed

combinations with blood flow models I through 6 are in Table 7.9. The calculations

were performed with a Macintosh I fx which has a clock-speed of 40 MHz and a 68030

microprocessor running on System 7.01. (The calculation times for simulations with ther-

Table 7.9 Computation Time Required to Determine Optimum Seed Combinations
(Newton-Raphson iteration tolerance, Tol = 5e-3 (Sec. 4.1.1.1))

Calculaons in Real Time (hrs)
Thmoseed Blood Flow Model

Combination 1 2 3 4 5 6
11.3 1.3 0.7 1.3 6.2 4.7
2 1.2 1.3 0.7 1.2 3.3 6.4
4 0.9 1.2 0.7 1.2 5.7 8.5
5 1.3 1.2 1.0 1.3 5.0 8.3
7 1.3 2.5 0.7 1.3 6.5 3.3

Total= 6.0 7.5 3.8 6.3 26.7 31.2

moseed combinations 3 and 6 are not shown in Table 7.9 since the Newton-Raphson

method (Sec. 4.1.1.1) was not used with these uniformly-loaded designs (see Sec.

7.2.3).) The simulations with the constant blood flow models required between 3.8 and

7.5 hr while the simulations with the temperature-dependent blood flow models required

between 26.7 and 31.2 hr. Although simulations with the temperature-dependent models

took substantially longer than that for the constant blood flow models, the complete

pretreatment planning process including finite element mesh creation should take no

longer than 1.5 days in the worst case with this software and using the Newton-Raphson

scheme. Based on the discussion in Sec:. 4.3.2.1, however, the variable-property routine

in FEHT (Klein et al. 1988) should significantly reduce these calculation times. With the
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frequent release of new and faster computers, running the software on higher speed

computers will further reduce the computational time. Thus pretreatment planning should

require only about 0.5 days in the near future.

7.5 Concluding Remarks

The main ideas which will be summarized in this concluding section include: (1)

modeling of a tumor in the prostate is an example of the pretreatment planning approach;

(2) normally, the physician observes a few measured temperatures during treatment to

determine if a treatment was good, however, with FEHT, the pretreatment planning

approach considers temperatures throughout the tumor and surrounding normal tissues

and therefore should give a better indication of the goodness of the treatment a priori; (3)

the objective function is the best way to plan a treatment if all modeling assumptions

(e.g., WbCb and kt in the tumor and surrounding normal tissues and the cell survival

models) approximated closely the actual conditions during treatment; (4) the objective

function was an effective method to optimize the treatment plan particularly when only an

educated guess can be made of the therapeutic trade-off between Ti,, tumo and

Tmx, normal-

A ferromagnetic hyperthermia pretreatment plan of a tumor in the human prostate

was developed in this chapter. A CT scan containing the largest cross-section of the

prostate and located near the midpoint of the prostate in the z-direction was used in the

simulations (Figs. 7.1 and 7.2). Contours of the boundaries of the organs and other

tissues in the model were obtained from the CT scan and transferred into FEHT using

standard Macintosh application programs and desktop features (Sec. 7.1.1). The

numerical values of thermal conductivity and blood flow were obtained from published

data (Sec. 7.1.2). The complete finite element mesh of the tissue model with eight
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simulated thermoseeds and two catheter models (used for monitoring temperatures during

treatment) was created with FEHT (see Fig. 7.3). About 1.5 to 2 hrs were required to

create the entire finite element mesh. A mesh consisting of 1904 finite elements was

adequate for sufficient accuracy of the numerical solutions (Sec. 7.2.1). Six blood flow

models were studied including two temperature-dependent models (Sec. 7.2.2). Seven

thermoseed designs, consisting of combinations of 48.1 C-, 54.1 C- and 60.1 C-type

thermoseeds, were used in simulations (Sec. 7.2.3). A Newton-Raphson technique was

used to determine the temperature of each thermoseed for the power absorbed (Sec.

4.1.1).

7.5.1 Tumor Survival Model

The differences between fractional cell-survival models A and B are larger at

lower temperatures, especially between 42 and 44 C, than at higher temperatures. Thus

the difference in the objective function between tumor survival models A and B increased

with thermoseed combinations that heated a small fraction of tumor to high temperatures.

In general, there was little difference in the objective functions computed with tumor

survival models A and B. It is concluded that since the hyperthermia cell survival of the

tumor can only be approximated, differences, similar to the two models used herein,

between the actual and the model of tumor cell survival will have a minimal influence on

the objective function.

7.5.2 Influence of Blood Flow Models on Temperature Distributions

Modeling the tumor core as a necrotic region of constant, low blood flow versus

modeling the tumor with a uniform, blood flow equal to normal muscle tissue at body

temperature had a small influence on temperature predictions. The Train,, tumor was only



214

0. 1 C higher in simulations with the necrotic tumor-core model. The T,.., normal and

T,,., t,,., were between 0.2 and 0.6 C higher with the necrotic tumor-core model. Thus

it is concluded that temperatures predicted with a necrotic tumor-core model will be

slightly higher than the temperatures predicted with a uniform blood flow model in the

tumor. However, this conclusion may not hold in simulations where thermoseeds are

implanted within the tumor core or in simulations with higher blood flow rates in the

tumor periphery.

Modeling the blood flow as constant and nine times higher in normal muscle

tissue and the tumor periphery resulted in significantly lower temperatures than that of

modeling the blood flow with a temperature-dependent model. In simulations, Tma., t..,

was between 1.3 and 3.5 C lower, Trai, to, was between 1.7 and 2.6 C lower and

Tma., normal was between 2.1 and 3.3 C lower with the constant blood flow model than

the temperature-dependent model. The percentage of tumor tissue greater than

temperatures between 42 and 50 C is between 0 and 65% higher over all thermoseed

combinations with the temperature-dependent blood flow model.

7.5.3 Differentially-Loaded Thermoseed Designs

The temperature distributions achieved with differentially-loaded thermoseed

designs were close to those of designs where thermoseed temperatures were fixed at the

average temperature of the differentially-loaded designs. Absolute temperature

differences between the differentially-loaded and unifonrly-loaded designs were less than

0.8 C for Trn. tumor and Tmax, normal. Isotherms from simulations with a differentially-

loaded design were similar to the uniformly-loaded design.
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7.5.4 Objective Function

It is possible to use a patient-specifc model and show that the objective function

can assist in selecting an optimum thermoseed combination among several possible

designs. The numerical value of the scalar weighting factor yhad some influence on the

optimum design (Table 7.7). Ideally, the optimum thermoseed combination would be

independent of the blood flow model since blood flow can never be known exactly. The

optimum thermoseed combination was independent of the blood flow models with y= 1.

The optimum thermoseed combination did, however, depend on blood flow models when

y = 0.2, 0.5 and 0.8 (see Table 7.7). Therefore, it is critical that blood flow models

simulate the actual blood flow as best as possible.

This study has developed two methods, the temperature descriptor method and the

objective function method, to optimize hyperthermia treatments a priori. Without the

objective function, the optimum ferromagnetic hyperthermia pretreatment plan would

mostly likely be selected on the basis of two temperature descriptors, the Tmin, tumor and

Tmax, norma temperatures. If the pretreatment plan were designed to maximize Tmin, tumor

among all thermoseed combinations regardless of thenthe combination with

the highest operating temperature thermoseeds (combination 7) would maximize Tmi,

t.,.r- If the pretreatment plan were designed to minimize Tmax, o regardless of Trin,

tumor, then the combination with the lowest. operating temperature thermoseeds

(combination 1) would minimize Tma, normal. (The T,, normal was, however, lower

than 45 C with seed combinations 4 and 6 which were warmer than combination 1 (see

Figs. 7.15e and 7.17e).) If instead the pretreatment plan were designed to achieve a

balance between maximizing Tra0, t0Mr and minimizing Ta,, normat, which is the most

frequently occurring design consideration, then selecting an optimum thermoseed

combination is somewhat more difficult. For example, recall that blood flow models 5
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and 6 are considered the models which most closely represent the blood flow in real tissue

(last paragraph in Sec. 7.2.2). It would be difficult to select an optimum thermoseed

combination based on achieving a balance between maximizing T tumor and minimizing

Tmainopr,,g, short of an educated guess and intuition (see the first six columns in Figs.

7.16e and 7.17e). Fortunately, though, the objective function identifies the optimum

thermoseed combination. Instead of basing the optimum combination on a therapeutic

trade-off between T tumor and Tmax, normal, the single-valued, maximum of the

objective function with y= 0.8 would identify the optimum thermoseed combination. As

such, the objective function may have an advantage over the method of selecting an

optimum treatment plan based on maximizing Tmi, tumor or minimizing Tma, o The

thermoseed combination which maximized Tmin, tumor also maximized the objective

function with y= 1 for every blood flow model (Figs. 7.12 through 7.17). Similarly, the

thermoseed combination which minimized and/or resulted in Tm< norma/<45

C also maximized the objective function with y= 0.2 and 0.5.

In conclusion, the objective function was an effective method to aid in selecting

optimum combinations of thermoseeds. Moreover, under the assumptions of the model,

use of the objective function in pretreatment planning will ensure that, of all the possible

combinations of thermoseed temperatures, the combination which maximizes the fraction

of tumor killed will be selected as the optimum combination based on the desired

treatment goal.

7.5.5 Tumor Site

In this chapter, a patient-specific, ferromagnetic hyperthermia pretreatment pl.n

was developed for a tumor in the prostate. The objective function could also be used in

pretreatment plans for other tumors that will receive brachytherapy. The sites of these
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other tumors may include the brain, cervix and ocular tissues, among others. Based on

the performance of the objective function to identify an optimum combination of

thermoseed temperatures for a tumor in the prostate, it is likely that the objective function

can identify an optimum seed combination which maximizes the fraction of tumor killed in

these other tumor sites.

7.5.6 Discrete versus Continuous Search for Optimum Thermoseed

Combination

The optimum thermoseed combinations identified by the objective function were

based on discrete values in the operating temperature of the thermoseeds (e.g., 48.1,

54. 1 and 60.1 C). The 48.1 C-, 54. 1 C- and 60.1 C-type thermoseeds were used in the

present study because 48.1 and 54.1 C-type, Ni-Cu thermoseeds are ready-made and

available for treatments (Brezovich 1991). It is possible, though, that the objective

function could be maximized with thermoseed operating temperatures between 48.1 and

60.1 C. Thus the objective function could have been maximized by performing a

continuous search for the optimum temperature of the thermoseeds.

Thermoseed locations in this chapter were fixed at catheter sites which were

established by the oncologist and brachytherapy pretreatment considerations. It is

possible and probably likely, however, that these catheter sites were not the optimal

locations of thermoseeds required to achieve the best temperature distribution in the tumor

and surrounding normal tissues. Again, the objective function could have been

maximized by performing a continuous search for the optimal locations of the
thermoseeds. The search for the optimal locations could have been performed

simultaneously with the search for the operating temperature of the thermoseeds to obtain

the global maium of the objective function.
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The 43 C isotherm in simulations with thermoseed combinations 5 and 6 encloses

all but the upper right comer of the prostate and a significant amount of the bladder and

rectum (Fig. 7.24). Thus it is expected that the global maximum of the objective function

would be achieved with low-temperature thermoseeds at locations 2, 3, 7 and 9 (Fig. 7.3)

and higher-temperature thermoseeds at sites 1, 4, 5 and 10. In addition, the objective

function would probably be maximized globally if the high-temperature thermoseeds at

sites 1, 4 and 5 were placed closer to the upper left, upper right, and lower right comers,

respectively, in the prostate than that shown in Fig.7.3.
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Chapter 8

Summary and Recommendations

A summary of this study and some concluding remarks and recommendations are

presented in Sec. 8.1. Recommendations for further research and development of the

work presented herein are discussed in Sec. 8.2.

8.1 Summary

This section contains a summary of ferromagnetic thermoseed and catheter models,

the implementation of the power-versus-temperature dependence of thermoseeds, the

physiologically-based objective function, and the performance of the objective function to

identify a best set of thermoseed temperatures and interseed spacings in ferromagnetic

hyperthermia.

8.1.1 Ferromagnetic Thermoseed Model

Analytical and numerical thermoseed models were developed in tissue models where

the heat flow was assumed one-dimensional. Results from the point-source numerical

thermoseed model showed that the thermoseed power P' goes to zero as the nodal area

around the seed, over which the energy balance is performed, approached zero. In this

case, the temperature gradient at the surface of the thermoseed would be infinite. Thus

the point-source model is an invalid model.
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The two finite-sized numerical thermoseed models had the shapes of a regular

hexagon and a dodecagon (12-sided polygon) in radial cross-section. The temperature

distributions determined with the hexagonal and dodecagonal thermoseed models match

equally well with the analytically-determined temperature distribution. The dodecagonal

thermoseed model was the preferred model because. its cross-section more closely

resembles a thermoseed.

Although the dodecagonal and hexagonal thermoseed models were developed in a

symmetrical tissue model in which the temperature distribution was one-dimensional,

both models are, however, general in their design. Thus the numerical models can be

used in two-dimensional simulations. The complete three-dimensional model was not

investigated.

8.1.2 Power-versus-Temperature Dependence of Thermoseed

Several simulations showed that fractions of tumor greater than 43 C are smaller

in simulations when thermoseed temperatures depend on power versus models which

assume a constant thermoseed temperature such as the Curie or operating temperature.

Fractions of tumor greater than 43 C were between 8 and 40% lower when thermoseed

temperatures depended on power versus models which assumed a constant temperature

equal to the operating temperature. Fractions of tumor greater than 43 C were even larger

than those achieved with the constant operating-temperature assumption if the Curie

temperature was used as the assumed constant temperature. By using the iteration

technique to determine thermoseed temperature for the power absorbed, it was shown that

over an order-of-magnitude change in normal tissue blood flow and a 2.5-fold change in

tumor blood flow, the temperature of thermoseeds changed by 1 to 2 C.
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The location of a thermoseed in a square array combination can also alter

thermoseed temperature. Thermoseeds furthest from the center of the square array had

the highest power absorption and the lowest temperature, while thermoseeds closest to the

center of the array had. the lowest power absorption and the highest temperature. The

difference in temperature between the furthest and closest thermoseeds to the center of the

square array was between 0.4 and 2 C over thermoseed spacings between 9 and 15 mm.

The modeling of catheters around thermoseeds was shown to decrease the absorbed

power of thermoseeds and increase their temperature versus modeling thermoseeds

without catheters. The drops in temperature through the catheter walls were significant.

The temperatures at the outer surface of catheters were between 1.7 and 6.8 C below the

temperatures at the inner surface over a wide range of blood flow models and thermoseed

types. Because of the temperature drop through the catheters, the fraction of tumor

greater than 42 C in simulations using thermoseed and catheter models were between 1

and 45.3% lower over all blood flow models and thermoseed array types studied than in

simulations with bare thermoseeds. In summary, because of the modest to dramatic

temperature drops through catheter walls and the smaller fractions of tumor above 42 C

for models of thermoseeds within catheters versus bare thermoseeds, more realistic

temperature distributions will be obtained if catheter models are included in computer

simulations.

The Implant-Biot number is a dimensionless variable that results from

nondimensionalizing a tissue model which has implants separated by a uniform distance.

The Implant-Biot number Bij (= WbCb 12/kt) is proportional to tissue perfusion WbCb and

to the square of thermoseed spacing 1 and inversely proportional to tissue thermal

conductivity kt. It was shown that for ferromagnetic hyperthermia treatment planning,

changes in thermoseed spacing are more critical (i.e., detrimental) than for the same
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relative changes in tissue perfusion. It was also shown that the use of higher operating

temperature thermoseeds more than off-sets the decrease in thermoseed temperatures

caused by wider interseed spacing or higher tissue perfusion rates.

8.1.3 Physiologically-Based Objective Function

The objective function is a mathematical equation which was formulated to optimize

hyperthermia treatments. Within the limits of the model, the maximum of the objective

function identifies thermoseed temperatures and interseed spacings that deliver a best heat

treatment. There are several important features of the objective function. First, the

objective function has a physiological basis and considers increased cell killing at

temperatures above 42 to 43 C (= Tn,, thera.). Second, there is a (penalty) term, 4 'N, in

the objective function to account for heating of normal tissues above Tri, thra.. Third,

because normal tissues below T.m tiwra are eliminated in the determination of the fraction

of normal tissue killed (VN), the objective function is independent of normal tissue size

and shape. Next, it was shown how VT can be compared with tumors of different shapes

and sizes. Last, since there is a scalar weighting factor yin the objective function that has
4

treatment implications, the oncologist becomes an active participant in treatment planning.

A guide for selecting y was provided. The value of y depends on hyperthermia

pretreatment design considerations including the therapeutic goal and the thermal tolerance

of normal tissues on the boundary of the tumor and normal tissues.

8.1.4 Performance of Objective Function with Ideal Tissue Model

The difference between the two tumor survival models had a small effect on the

fraction of tumor killed and on the objective function. It was concluded that since the

hyperthermia cell survival of the tumor can only be approximated, differences, similar to
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the two models used herein, between the actual and the model of tumor cell survival

should have a minimal influence on the objective function.

It was shown that the objective function was an effective method in identifying

optimum thermoseed spacings. In several simulations, smaller (than the maximum)

fractions of tumor would be killed if the pretreatment plan were based on maximizing

Tmin, tumor and maintaining Tm,, =a=45 C than if the pretreatment plan were based

on maximizing F with y= 1. Indeed, maximizing F with y = 1 yielded thermoseed

temperatures and interseed spacings that maximized the fraction of tumor killed in all

blood flow models studied. Therefore, it is concluded from simulations on the simple

tissue model that the objective function was an effective method in identifying optimum

thermoseed configurations. In addition, the objective function may have an advantage

over the method of selecting optimum seed configurations based on the Trin, tumor and

Tmax, ormal temperature descriptors. That is, since the objective function is a single-

valued number which can be used to select an optimum seed configuration, one avoids

having to decide on the therapeutic trade-off between maximizing Ti, tumor and

minimizing T, aa aorm in order to identify an optimum seed design.

8.1.5 Performance of Objective Function with Patient-Specific Model

In general, there was little difference in the objective functions computed with

tumor survival models A and B. It is concluded that since the hyperthemia cell survival

of the tumor can only be approximated, differences, similar to the two models used

herein, between the actual and the model of tumor cell survival will have a minimal

influence on the objective function.

Two methods, the temperature descriptor method and the objective function

method, were used to identify an optimum combination of thermoseed temperatures a
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priori. It was shown that if the pretreatment plan were designed to achieve a balance

between maximizing Triu ,r and minimizing Ta o which is the most frequently

encountered design consideration, then the objective function is the preferred method to

choose the optimum combination.

In conclusion, the objective function can replace the temperature-descriptor method

of selecting optimum combinations of thermoseeds. Under the assumptions of the model,

use of the objective function in pretreatment planning will ensure that, of all the possible

combinations of thermoseed temperatures, the combination which maximizes the fraction

of tumor killed will be selected as the optimum combination based on the desired

treatment goal.

8.1.6 Concluding Remarks

There were several important features in the objective function. The objective

function was not, however, formulated to consider patient pain directly. In other words,

there is no term in the objective function that accounts directly for pain. Indirectly,

though, the weighting factor could be used to consider patient pain. A value for y

between 0.2 and 0.5 could be used in pretreatment planning of patients who have a low

threshold of pain. Conversely, a value for ybetween 0.8 and 1 could be used for patients

with a high threshold of pain.

The objective function was shown in simulations to provide optimum thermoseed

temperatures and spacings in square arrays that killed a greater fraction of tissue than

thermoseed design choices that maximized T,,. :r and achieved T,,m, , 45 C.

Ultimately, though, the usefulness and adequacy of the objective function can only be

validated through clinical trials. In a clinical trial, patients would be randomized to receive

a ferromagnetic hyperthermia treatment where the thermoseed combination would be
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based on temperature descriptors (e.g., T,n, tumor and Tmax, normal) or to receive a

treatment with a thermoseed combination that maximizes the objective function.

An issue of considerable interest in this study was blood flow modeling in the

tumor and surrounding normal tissues. It was shown that temperature-dependent (versus

constant) blood flow models had a significant effect on temperature distributions and

optimum choices of thermoseed designs. Thus it is critical that models of blood flow

approximate actual blood flow as closely as possible. However, the actual blood flow in

several tissues at temperatures between 37 and 50 C is not known very well but is

generally believed to be temperature dependent. As such, the temperature-dependent

blood flow models used herein were based on published data (Song et al. 1984) from rat

muscle and animal tumors. It is therefore concluded that temperature-dependent blood

flow models similar to those used herein should be used in pretreatment planning. In the

future, when other well-investigated, temperature-dependent, site-specific (e.g., prostate,

cervix, brain, etc.) blood flow data become available, these can be used in appropriate

tissue models.

Presently the complete pretreatment planning process including finite element

mesh creation should take no longer than 1.5 days in the worst case with this software

and using a Newton-Raphson scheme. However, the variable-property routine in FEHT

should significantly reduce the calculation time. Moreover, with the frequent release of

new and faster computers, running the software on higher speed computers will further

reduce the computational time. Therefore, complete two-dimensional, ferromagnetic

hyperthermia pretreatment planning should require only about 0.5 days in the near future.

A major objective of this study was to develop a method that can be used to plan

ferromagnetic hyperthermia treatments. The objective function was developed to provide

a physiologically-based method with which hyperthermia treatments might be optimized a
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priori. The objective function utilizes cell-survival curves. Critics of the objective

function may argue that tumors are comprie of different cell types and each may be in a

different phase of their cell cycle, with some phases being more resistant to heat than

others. However, it was shown in this study that the fraction of tumor killed and the

objective function was fairly insensitive between two different models of tumor cell

survival. Still other critics may argue that the use of hyperthermia cell-survival curves to

optimize ferromagnetic hyperthermia treatments may be before its time. After all, it is

only recent, that some research has begun to focus on optimizing radiation therapy to cell

cycle and proliferation rates. Nonetheless, the objective function developed herein is the

first of its kind to incorporate the physiological response of tissue to heat into a

pretreatment planning method. Under the assumptions of the models in the simulations

investigated herein, the objective function was shown to identify optimal thermoseed

temperatures and seed spacings by maximizing the fraction of tumor killed.

8.2 Recommendations & Further Research

Recommendations on how to use the objective function to plan ferromagnetic

hyperthermia treatments is discussed in Sec. 8.2.1. Ideas for further research and

development in ferromagnetic hyperthemia are presented in Sec. 8.2.2.

8.2.1 Recommendations

Recommendations on the use of the physiologically-based objective function to plan

ferromagnetic hyperthermia treatments are presented below in a step-wise manner. The

recommendations are subdivided into thermoseed designs using a square array and those

using a combination of thermoseeds where seed location has been fixed previously by

other considerations (e.g., brachytherapy treatment planning).
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Square Array of Thermoseeds

Step 1 Specify the temperature-dependent blood flow models in tumor and normal

tissues.
Step 2 Specify the cell-survival model of normal tissue. Unless better data is

available, assume the cell-survival model of tumor is equal to that of normal

tissue.
Step 3 Compute the objective function for several weighting factors between 0.2 and

1 and arrays of thermoseeds with operating temperatures of 48.1, 54.1 and

60.1 C with interseed spacings between 8 to 15 mm.

Step 4 Determine the treatment goals and choose the weighting factor consistent with

those goals.
Step 5 Select the operating temperatures and spacing of the thermoseeds in the array

which maximizes the objective function for the chosen weighting factor.

Fixed Location of Thermoseeds

Step 1 Specify the temperature-dependent blood flow models in tumor and normal

tissues.
Step 2 Specify the cell-survival model of normal tissue. Unless better data is

available, assume the cell-survival model of tumor is equal to that of normal

tissue.
Step 3 Compute the objective function for several weighting factors between 0.2 and

1 and arrays of thermoseeds with operating temperatures of 48.1, 54.1 and

60.1 C
Step 4 Determine the treatment goals and choose the weighting factor consistent with

those goals.
Step 5 Select the operating temperatures of the thermoseeds in the array which

maximizes the objective function for the chosen weighting factor.
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8.2.2 Further Research

Areas of fuither research include: (1) the inclusion of treatment time into the model

of cell kill in the objective function (Sec. 8.2.2.1) (2) assessing the applicability of the

Pennes bioheat transfer equation to predict temperatures in a two-dimensional model

which were measured previously in an in vivo model (Sec. 8.2.2.2), (3) theoretical and

experimental studies on using ferromagnetic hyperthermia to treat choroidal melanomas

(Sec. 8.2.2.3), (4) the development of general-purpose, two-dimensional ferromagnetic

hyperthermia pretreatment planning software (Sec. 8.2.2.4), (5) the extension of the two-

dimensional software (FEHT) to three dimensions (Sec. 8.2.2.5).

8.2.2.1 Hyperthermia Treatment Time

The inclusion of treatment time into the model of cell kill in the objective function

could also be studied with computer models. Recall that hyperthermia cell-survival

curves are a function of temperature and time, among others (Ch. 5). It may be possible

to show with simulations that shorter treatment times are needed with higher temperature

thermoseeds to kill the same fraction of tumor as that needed with lower temperature

thermoseeds and longer treatment times. However, there may be practical limits to

transferring these results to the clinic. After all, the objective function does not consider

patient pain directly, and the use of higher temperature thermoseeds will most likely result

increased patient pain.

8.2.2.2 Applicability of the Pennes Bioheat Transfer Equation

Tompkins et a!. (1992a) studied the effect of several ferromagnetic hyperthermia

treatment variables including generator power level, interseed spacing, thickness of

catheter walls and orientation of a 3x3 array of thermoseeds. The effects of these
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variables were studied both in vitro in issue equivalent phantom material (i.e., gel) and in

vivo in the hindlimb of rabbits. Transient and steady-state temperatures were measured

and recorded at several interseed locations. The accuracy of the dodecagonal thermoseed

and catheter models developed in Chapters 3 and 4 could be assessed by comparifig the

experimental data from Tompkins et al. (1992a) to simulations using the thermoseed and

catheter models. A study of this kind should reveal the applicability of using the Pennes

bioheat equation to predict measured temperature response.

8.2.2.3 Choroidal Melanoma Study

A major effort is underway at the University of Wisconsin to treat choroidal

melanomas (tumors originating subretinally in the inferior portion of the eye) with a

combination of hyperthermia and radiation (Steeves et al. 1992). Current protocols allow

for randomization of choroidal melanoma patients to enucleation (or removal) of the eye

or to receive 100 Gy of 1251 radiation to the tumor apex (COMS or the Collaborative

Ocular Melanoma Study). The radiation alone therapy is delivered with episcleral plaques

(i.e., small circular, silastic disks) that contain several (12-15) 1251 sources. The

combined hyperthermia and brachytherapy treatment, however, uses 10 1251 and four

thermoseeds in a parallel, alternate arrangement on the surface of the plaque (Steeves et al.

1992). There is evidence that tumor control with the combined radiation-hyperthermia

method can be achieved with (significantly) lower amounts of radiation than with

radiation alone (Steeves et al. 1992). The lower amount of radiation may reduce the

magnitude and frequency of normal tissue damage (e.g., hemorrhaging, blindness, etc.)

engendered by the radiation-only therapy.

Upon completion of the present study, research will focus on expeniments to

measure temperature" distributions in the eye produced by heating of the combined
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radiation-hyperthermia plaque. A computer model will be developed to predict the

experimental results. It is possible, that the physiologically-based objective function may

be used to optimize the heat treatments f the episcleral plaques.

8.2.2.4 General-Purpose Ferromagnetic Hyperthermia Pretreatment

Planning Software

For the purpose of this research project, several ferromagnetic hyperthermia

treatment variables were hard-wired (i.e., placed within the source code) into FEHT. The

treatment variables include the magnetization-versus-temperature dependence and the

electrical conductivity of the thermoseeds, thermoseed and catheter wall thicknesses, and

the frequency and strength of magnetic field. Since these variables are hard-wired, it is

impossible to alter the values of these variables without access to the FEHT source code.

General-purpose ferromagnetic hyperthermia pretreatment planning software would,

however, allow users to alter variables with an executable version of FEHT. The

following is a brief discussion of the modifications required to transform FEHT into a

general-purpose, ferromagnetic hyperthermia treatment planning software. The

discussion consists of three modifications. Each modification is depicted by a bold type

Current which discusses the current features of FEHT and bold type Modification

which describes the modification to FEHT.

Current
When the user selects 'Bio-Heat Transfer' from the Subject menu, the 'Blood
Temperature' menu item appears at the bottom of the Setup menu.

Modification I
Place a menu item entitled Hyper Treatment' below the 'Blood Temperature' menu
item (Fig. 8.1). After selecting the HIyper Treatment' menu item, a dialog box could
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appear as shown in Fig. 8.2. The dialog box would allow the user to specify the

thermoseed radius and catheter wall thickness. Three different thermoseed types

could be specified where the magnetization and electrical conductivity could depend

on temperature. The strength and frequency of the magnetic field could be specified.

The thickness, magnetization and electrical conductivity of the thermoseeds and the

strength and frequency of the magnetic field would be used to evaluate the power

absorption of thermoseeds (recall Eq. 4.2).

File Subject Draw Display
*1*

I Units and Scale

Cartesian
Cylindrical

V Steady-State
Transient

%/Temperature in °C
Temperature in °K

Blood Temperature

HHyper Treatment

Figure 8.1 Modified 'Setup' Menu

Current
When the user selects 'Add Seed' from the Draw menu, the arrow head changes into a
cross-hair and the user can place models of thermoseeds into the finite element mesh
(recall Sec. 3.4).

Modification 2

Two sub-menu items entitled 'Catheter' and 'No Catheter' should be placed next to
the 'Add Seed' menu item (Fig. 8.3). When the user selects 'Add Seed' from the

Draw menu, the catheter option will be made available. By designating 'Catheter' as

Setup
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the active option, the thermoseed model will include a catheter with the wall thickness

as previously designated in the 'Hyper Treatment' dialog box. The thermal model of

the catheter has been discussed (recall Sec. 3.4).

Thermoseed Description

Seed Radius =45e-4m Catheter Thickness = j2.5e-4m

Oper.
Type Temp.

Seed I = .NI-Cu 148.1 ci
Seed 2 =INi-Si 154ol C
Seed3 Ni-Pd 60

Magnetic Field Description

Electrical
Magnetization Conductiuity

(Tesla) (I/-m

a+b*T+c*T**2 2.57e6

a+b*T+c*T**2Ee6

LFET+c*T**2 2576

Strength= 3.98e3 Amp/m

Frequency = 90000 Hz

The magnetization and electrical conductivity may be entered as a function of T.

Figure 8.2 'Hyper Treatment' dialog box

Current
The 'Run' menu item contains options to perform a 'Check' of the finite element
mesh, to 'Calculate' or determine the unknown temperatures, and to 'Continue'
during specified break points during a transient calculation.
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Modification 3
Place a menu item entitled 'Do Iteration' below the 'Continue' menu item (Fig. 8.4).

By choosing the 'Do Iteration' option, thermoseed temperatures will be determined

with the iteration technique described Sec. 4.1.1.1.

Subject SetupZEIZZ Display Specify

Outline
Element Lines
Reduce Mesh Size
Reposition Nodes
Delete

M0

XL
MW

MR
390

Text MT

Size/Moue Template

Group
Ungroup XH

Add Seed MU

Run

veCatheter
No Catheter

Figure 8.3 Modified Draw' Menu

Display
Check XK
Calculate MC

wfDo Iteration

Figure 8.4 Modified 'Run' Menu

I D r- aul I
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The development of general-purpose ferromagnetic hyperthermia pretreatment

planning software could find use among several institutions currently administering this

form of therapy to patients.

8.2.2.5 Three-Dimensional Treatment Planning Software

Ultimately, the two-dimensional treatment planning software (FEHT) should be

extended to three-dimensions. Studies contrasting the temperature distributions from

two- and three-dimensional models of ferromagnetic thermoseeds have shown that two-

dimensional modeling is sufficient only under certain conditions. One condition is that

the thermoseeds should be longer than 30 mm and that the plane modeled is perpendicular

to the thermoseeds and centrally-located within the tumor (Chen et al. 1991). Another

condition is that the plane modeled should be perpendicular to the thermoseeds and at a

distance of at least 10 mm from the ends of the thermoseeds (Chin and Stauffer 1991).

Since there is growing clinical interest at the UW (and elsewhere) in the use of combined

brachytherapy and ferromagnetic hyperthermia by combining alternately, short (4 mm)

radiation and ferromagnetic thermoseeds end-to-end in catheters, complete three-

dimensional modeling will be necessary.

In the development of the three-dimensional software, consideration must be

given to the order (or basis function) of the fimite elements. In the case of linear elements,

the three-dimensional extension of the two-dimensional, triangular finite element (used in

EEHT) is the tetrahedron. Other linear elements include the pentahedral and hexahedral,

among others. In the development of three-dimensional finite element software for an

interstitial microwave hyperthermia system, it was shown that solutions obtained with

tetrahedrons required longer (by a factor of two or three) CPU times than with

pentahedrals and hexahedrals (Mechling 1990). Thus the use of pentahedrals and
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hexahedrals over tetrahedrons should reduce the critically-important CPU time. For ease

in development, the consideration of higher order elements will be limited to quadratics.

To reduce the time needed to create three-dimensional finite element meshes,

consideration must be given to the use of auto-meshing techniques and the expedient

transfer of CT/MRI data to the host computer. Here, there is a vast supply of techniques

that can be used for expedient mesh generation.
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Appendix A

Development of Finite Element Equations

In Appendix A, the differential equation used for predicting temperature

distributions in tissue is transformed into a system of equations which can be solved

numerically. The differerftial equation is presented in Sec. A. 1 and the transformation of

the equation into a system of equations is discussed in Sec. A.2.

A.1 Governing Differential Equation

The governing partial differential equation for calculating the temperatures in two-

dimensional tissue models is the bioheat transfer equation

P (ktTx) + - (ktTy) + g ptPbCbm (T - Tb) = ptct-- (A. 1)

In Eq. A.1, Tx = dT//x and Ty = dT/idy ; g"' is the energy rate associated with

metabolic and/or absorption of applied energy; and all other variables were defined in Sec.

2.1. Setting the mass flow rate of blood per unit volume of tissue wb [kg/s-m 3] equal to

PtPbm, Eq. A. 1 becomes

dxf (ktTx) + " (ktTy) + g - WbCb (T - Tb) = PtCt'- " (A.2)
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Figure A.1 General two-dimensional, transverse cross-section of tissue.

Equation A.2 can be solved for in the simulated tissue region shown in Fig. A. 1.

The steady-state form of Eq. A.2, without energy dissipation due to metabolic

processes and absorption due to applied energy, has exact analytical solutions when

applied to a square domain with various boundary conditions (see Appendix B).

However, the geometries of realistic normal and tumor tissues are irregular (see Chapter

7). Thus a numerical solution to Eq. A.2 will be required.

The finite element method using the Galerkin approach was used to transform Eq.

A.2 into a system of equations which can be solved on a computer. The finite element

method has been used to transform the two-dimensional heat conduction equation into a

system of equations (Myers 1989). Since the bioheat transfer equation is similar to the

heat conduction equation, several equations from Myers (1989) will be included in

Appendix A for completeness of the presentation. Some of the notation in Appendix A

will be consistent with that of Myers (1989).
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A.2 Finite-Element Method

The complete transformation of Eq. A.2 into a system of equations which can be

solved on a computer requires several steps. The method of weighted residuals is

discussed in Sec. A.2.1. The tissue region is discretized and the matrices are developed

in Sec. A.2.2. The numerical techniques used to determine temperatures are briefly

presented in Sec. A.2.3, and the calculations of the heat flows and energy balances are

mentioned in Sec. A.2.4.

A.2.1 Galerkin Weighted Residual Method

After rearranging and using the method of weighted residuals, Eq. A.2 is

multiplied by a weighting function ftx,y) and then integrated over the tissue region (Fig.

A.1) to give

Jj. ~d fdxy)I i 2 -~T)+2 -I ]g'wc(T -Tb dx dyI Tissue f 69 P ja dx d~) ty ) Yjj+ b

= 0 (A.3)

The exact solution to Eq. A.3 will make the integrand (the portion of Eq. A.3 enclosed by

brackets }) identically zero in the tissue region. The method of weighted residuals finds

an approximate solution that will make the integral (a weighted average of the residuals)

equal to zero even though the integrand will not be zero. Thus the weighted average of

the residual will be zero rather than the residual itself. After integrating the heat

conduction terms in Eq. A.3 (the portion of Eq. A.3 enclosed by braces []) and

evaluating the terms along the boundary, it may be shown
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J -ais s P: dx dy + JJTL,s fktT. + fykT,] dx y fg"to 'dy

+ J fWiCb (T -Tb) drdy - qA4sBoundary(A.4)

where qO is the heat flux into the tissue along the boundary from outside the tissue.

Next, it is assumed that the temperature distribution can be approximated by N

terms

T (xy) = wl(x,y)T 1 + w2(xy) T 2 + ... + wi (x,y)Ti + + WN (XY)TN

which can be written in matrix notation as

T (xy) = WT(X,y) T (A.5)

A set of N differential equations can be obtained by using N independent functions fj

(xy), ... , fi (x,y), ... , fN (xy). The Galerkin technique requires that each fi (x,y) =

wi (xy). After substituting Eq. A.5 into Eq. A.4 and upon replacing f by f = w, fx by

fx = wx, fy by fy = wy, and letting Tx = wT T, Ty = wT T and aT/at=wTT', Eq. A.4

becomes

ffJissse w .w x l + [Jf Uef (wk wf + wkw ) dx dy]T - JJ1. rwg"'f y

+[JJT,'. wwbcb,.wT dx dy] T = J~ounar Wqo d + fTissasewwbcbTb, dx dy (A.6)
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Equation A.6 is a system of N ordinary differential equations. After some rearranging,

this system of ordinary differential equations cin be written in matrix notation as

CT +(K+B)T-g=b+q, (A.7)

where

C = JJTissue wptctwTdxdy (A.8)

K = (wxktwT + w ktw)dx dy (A.9)

B = I JTissueWWbCbwTdx dy (A.10)

g = J Tissuewg"'dx dy (A.11)

b = J JTiSSuWWbCbTb dyi) (A.12)

qo = o . wqo ds (A.13)

Notation for the C and K matrices and the T, T, g and qo vectors were defined

previously by Myers (1987).

A.2.2 Discretization of Tissue Region

A set of N nodal points will discretize the tissue model in Fig. A. 1 (see Fig. A.2).

Straight lines are used to connect the points thereby dividing the tissue into triangular

elements. The function wi (x,y) is used as an interpolating function to determine the
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Y

SX

Figure A.2 Discretization of a portion of the tissue model in Fig. A.1 into
triangular-shaped, finite elements. Vertices i, j and k are the nodes of finite
element e.

temperature at locations inside the elements that surround node i. Therefore it is required

that

wi (xy) = 1 at node i

and

wi (xy) = 0 at all other nodes.

It is assumed that wi (xy) varies linearly from 1 at node i to 0 at nodes connected directly

to node i and is 0 everywhere outside of the finite elements around node i.

A.2.2.1 Interior Elements

The next step in the finite element formulation is to evaluate C, K, B, g and b as

given by Eqs. A. 8, A.9, A.10, A.11 and A. 12, respectively. Once the simulated tissue is

discretized into triangular elements, the integral over the tissue area will equal the sum of

the integrals over the elemental areas. An example of an elemental area is given by the.

shaded area in Fig. A.2. The formulation of C, K, B, g and b are given by
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C~ su = J TS'ptT xd = 1:J Tirw"(e)WPt x(.4e=1 '(A. 14)

K(wxk+4 + ww kkw)dxddy

e=1 I Tissu(e)(+) d(A.15)

B = WTdx dy NE

S= TissueWWbCbw x y TiSSue(e)WWbCbWdx dy
e=1 (A.16)

1*I y'"@&d

e=1 (A.17)

NE

b = J JTisseWWbCbTbdxY -- = f ITissue (e)WWbCbTb dx (Y
e=1 (A.18)

A.2.2.1.1 Uniform Element Properties

The values of Pt, ct, kt, wb, cb, and g' will be assumed uniform within an

element, while the blood temperature Tb will be uniform throughout the tissue. These

values may be factored out of the element integrals to give

c = NE(e) C(e)JTissue(e)WWTdAI Pt - t"t dAisue-- 1(A. 19)

NE . (e) h..W T +WW

K = k (e)Jx y + wywT)dA
e=1 t ) Tissue)W yA(A.20)
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NE

g = , g' (e)J()wdAe=1 is()(A.22)

= b Tb JTissue(e)wdA(A.23)

e)= e)ke) (e.A.2e3,an)' e

where pte ce, kwb, cb and gD (e) are the values of Pt, ct, kt, wb, Cb, and g

respectively, for element e. The differential area dx dy has been written as dA.

Myers (1989) has defined an element capacitance matrix C(e), an element

conduction matrix K(e) and an element generation vector g(e) as

C(e) - (e)c(e) J (e)WWT dA
A t "t Tissu eW T d  (A.24)

K(e) kt (e)JTissue(e)(wxWx + wyw ) dA (A.25)

g(e) = g"' (e)Tissu.(e)wdA f (A.26)

Similarly it is convenient to define an element perfusion matrix B(e) and an element

perfusion vector b(e) as

B (e) W (e) c()JTissue(e)wwTdA (A.27)

b(e) = w c b ITissue(e)W dA(A.2)

The summation of C(e), K(e), g(e), B(e), and b(e) over all the finite elements in the tissue

model are given by the global capacitance matrix C, the global conduction matrix K, the
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global generation vector g (Myers 1987), and the global perfusion matrix B, and the

global perfusion vector b, respectively (Eq. A.7).

Capacitance Matrix

Myers (1989) shows that the element capacitance matrix C(e) is given by

(e) (e) (e)
(e) c

12

2

1

1

Og

1

2

1

0
U

2

Id

Row i

Rowj

Row k

where the area of an element A(e) is given by A (e) = 1 [Xijyjk - xjkyij]. Here, i, j and k2

are the nodes or vertices of element e and xij = xi - xj, Yjk = Yk - Yj, etc. The element

capacitance matrix is an N by N matr.
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Conduction Matrix

Myers (1989) shows that the element conduction matrix K(e) is given by

K(e) = k(e)
4 A(e)

KU Kij

Ki Kjj

Kla KAj

0
U

where

=ii xjkxjk + Yik Yjk i = - (Xjk Xik+ Yjk Y ik)

Kjj = XikXik + YikYik

1 ik = XjkXij + Yjk Yij
Ijk = - (xik x-i + YikYij)

Kkk = XijXij + YijYij

The element conduction matrix is an N by N symmetric matrix.

Generation Vector

Myers (1989) also shows that the element generation vector g(e) is given by

K- Row i

Rowj

Row kKkk

(A.29)

qw A



(e) =g " (e) A(e)

3

Row i

Rowj

Row k

Perfusion Matrix

The element perfusion matrix B(e) can be shown to be

w(e) (e) (e)
Wb Cb

12

2

1

1 Row i

1 Rowj

1 1

*1
U

0
U

2

P5

Q

Row k

Perfusion Vector

The element perfusion vector b(e) was found to be
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(A.30)

B(e)

(A.31)
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1 Row i

(e) (e)TbA(e) 1 Row j

b(e) -Wb C, 3  (A.32)

1 Row k

A.2.2.1.2 Variable Element Properties

The values of Pt, Ct, kt, Wb, Cb, and g"" will be variable within an element. They

are scalar values that are functions of x and y within an element.

Capacitance Matrix

The element capacitance matrix C(e) is given by (Myers 1987)

C(e) =ITissue(e) WptctwT dA (A.33)

Let ptct be a linear function within an element as defined by

Act = [(Ptct)i (Ptct)j (Ptct)k] 8 = i(PtCt)i + '5(ptCt)j + Sk(PtCt)k (A.34)

[(5k

In Eq. A.34, (Ptct)i, (ptct)j and (PtCt)k are the products of the densities and specific heats

of the tissue at nodes i , j, and k, respectively. 3i (xy) is an interpolating function to help

find the density and specific heat at points inside the elements that surround node i so that

(Si (x,y) = 1 at node i

and

(Si (x,y) = 0 at all other nodes.
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Similarly, 8j (xy) and 6k (xy) are defined in the same manner. That is,

j (xy) = 1 at nodej

and

6j (xy) = 0 at all other nodes and

k (xy) = 1 at node k

and

8k (xy) = 0 at all other nodes.

It is convenient to introduce a local coordinate system within the triangular-shaped

finite elements. This coordinate system is based on the area coordinates i, 4j and '/,

within each finite element (Myers 1989). Like 6i (x,y), 8j (x,y) and 6k (x,y), area

coordinates are equal to 1 at nodes i, j and k, respectively, and linearly decrease to zero at

the side opposite to nodes i, j and k, respectively. The location of a point at (x, y) within

the triangular element is fixed by specifying any two area coordinates. Area coordinates

are useful for carrying out the integrations in Eq. A.33. Therefore within a triangle

5i (xy) = 4i, 4 (x,y) = 4j, 8k (x,y) = 4k and Eq. A.34 becomes

Ptct = Oi(PtCt)i + 4j(PtCt)j + APtCt)k (A.35)

A relation which will be made of use later is

iiL2dAA
Lj (a + b + c + 2)! (A.36)

The integrand in Eq. A.33 is given by



wPt c wT=

In Eq. A.37,
Vii =-

Vii-

Vik-

Vjk -

1Vkk =

Vii Vii

V..j

V~ki VAk

I
0
U

I
0

U

Vikt

Vkk

Row i

Rowj

Row k

4i (PtCt)i 4i 4i + 4i (PtCt)j 4 ji + 4i (PtCt)k k 4i

4i (PtCt)i 4 ij + 4i (PtCt)j 4 j j + 'i (PtCt)k k 4j

4i (Ptct)i 4i k + 4i (PtCt)jY'1j k + 4 (PtCt)k 4k k

4j (PtCt)i 4i 4jk + j (Ptt)j 4j 4j + 4j (PtCt)k 4k 4j

k (PtCt)i 4i k + k (PtCt)j 4j k + k (PtCt)k 4k k

Equation A.37 is symmetric and must be integrated over the area of finite element e.

Since (ptct)i, (Ptct)j and (Ptct)k are not functions of area (merely products of the density

and specific heat at locations i, j and k), they can be taken outside the integrals. With the

aid of Eq. A.36, the three (fundamental) solutions to integrations in Eqs. A.38 through

A.43 are
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(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

4
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(30+30!2 ) 0JTissU(e)4i dA = 20! Z(e) - A(e)(3 +0 + 0 +2)! 10 (.4

J2su )'i ~ = 2!.1!0! 2(e) .. A (e)
(2+1+0+2)! 30 (A.45)

JTiss(e)4i 4j 4k dA = 1!1!l! 2A(e) = A (e)

(1 + 1 + 1 +"2)! 60 (A.46)

All other integrations in Eqs. A.38 through A.43 involve different combinations of 4's

than those appearing in Eqs. A.44, A.45 and A.46. The general result of these

integrations, however, are given on the right-hand side of Eqs. A.44, A.45 and A.46.

After all integrations in Eqs. A.38 through A.43 are evaluated, the element capacitance

matrix C(e) is given by

. ik Row i

Xj .. X. Row j
ijk

C (e) =
Xkj Xkk Rowk

x k Z A* Row k

(A.47)
00

In Eq. A.47,
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Xii = [ 3(ptct)i + (Ptct)j + (Ptct)k ] A,1Ak

Xij = [ 2(ptct)i + 2 (ptct)j + (PtCt)k ] A )60

Zik = [ 2(ptct)i + (ptct)j + 2(ptct)k ] A (e)60

Xjj = [ (Ptct)i + 3(ptct)j + (Ptct)k ] A(e)

30

Xjk = [ (ptct)i + 2(ptct)j + 2(PtC)k ]A()60

Zkk = [ (ptct)i + (ptct)j + 3 (Ptct)k ] A(e)30

The element capacitance matrix C(e) (Eq. A.47) is a symmetric matrix.

Conduction Matrix

The element conduction matrix K(e) is given by (Myers 1987)

K(e) = JTisse(e(WxktWX + w kw) dA (A.48)

Let kt be a linear function within an element as defined by

k, = [kti ktj ktk] j = &kt i + 3jktj +.kkt k (A.49)

L4kJ

In Eq. A.49, kt i, kt jk are the thermal conductivities of the tissue at nodes i, j, and k.

As in the development of the element capacitance matrix, 6i (xy) = 4i,3j (x,y) = 4j and

'5 k (x,y) = '/k. The thermal conductivity at points inside the element can, therefore, be

found by
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(A.50)

where, again, 4i, 4j and 4,k are the area coordinates for element e.

By using Eq. A.50, the first term on the fight-hand-side of Eq. A.48 (wx kt wT)

is

w , w -(¢k" + ¢kt j + 4kt
w x bi2(e)

ijk

YjkYjk -YjkY ik YjkYij

-YikYjk YikYik -YikYj

YijYjk Y"Yik YijYij
• N

Here b 2 (e) 4 A(e)2 (Myers 1987). Similarly, the other integrand in Eq. A.48
Ii s

(WYk WT) is given by

Row i

Row]

Row k

kt = ikt i + jktj + 41ckt



y kt wT_=( ikt i + jkt + 4kk)
b ibk2(e)

XjkXjk -XjkXik Xjkx-

-XikXjk XikXik -Xik Xj

XijXjk -XijXik XijXij

- "-

Q 0

Notice that both W kt wT and wy kt WT are symmetric matrices. In addition, most of the

entries in w. kt wT and w, ykt WT are not functions of x or y and can be factored out of

the integral in Eq. A.48. After factoring out the independent parts, three integrations

remain to be performed for each entry in wx kt WTj and wy kt wT. With the aid of Eq.

A.36, the three (general) solutions to the integrations in Eq. A.48 are

Tissue (e) dA = 1!0!0! 2A(e) = A (e)(1 +0+0+2)!
ITissue(e) j dA = 0!10! 2A (e) = A

(0+ 1 +0+2)!

Tissue (e)kdA = 0!0! 1! (e) A(e)
(0+0+ 1 +2)!

(A.51)

(A.52)

(A.53)

Combining w., kt w and w y kt w T with the result of Eqs. A.51, A.52 and A.53, the

integration of Eq. A.48 becomes
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Row i

Row]

Row k



(kti + ktj+ kt k ) A(e)
K~Uk)e) 3 b 2 (e)

1%jKj

KA2- K

0

0
U

where Kii, ij,4...,oKkk are given in Eq. A.29.
Since = (e)S inbjk = 4A (e)2, tiq. A.54 is

equivalent to

K(e)~ (kti + ktj + ktk)

12 A(e)

K11

Ki Kkj

ICjk

Row i

Row]

Row k

I
U

U
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Row i

Rowj

Row kKM

A
(A.54)

(A.55)

\ /¢i/
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The element conduction matrix K(e) is an N by N symmetric matrix.

Perfusion Matrix

The element perfusion matrix B(e) is given by

B(e) = ITissue(e)W WbCb WT dA (A.56)

Let WbCb be a linear function within an element as defined by

WbCb =[(WbCb)i (WbCb)j (WbCb)k] 3 - i(WbCb)i + j(SbCb)j + Sk(WbCb)k (A.57)

['5k]

where (WbCb)i, (WbCb)j, and (WbCb)k are tissue perfusion values at nodes i , j, and k. As

designated earlier, 6i(xy), j5(x,y) and &k(x,y) are interpolating functions to help find the

tissue perfusion at points inside the elements. As in the development of the element

capacitance matrix C and thermal conduction matrix K with variable properties,

8i (x,y) = i, j (x,y) = 4j, 5k (x,y) = k. Thus Eq. A.57 becomes

WbCb = 4i(WbCb)i + 4j(WbCb)j + 4k(WbCb)k (A.58)

where 4i, ge and k are the area coordinates for element e.

The integrand in Eq. A.56 is given by



WliCb WT=

(oji

oJ)i

(A) .

WEk '0 kj Ck
'Iii4

od

U

In Eq. A.59,

'Oii-

coik -

(jj =

=ojk

(Dkk =

ci (WbCb)i i i +4i (WbCb)j + j4i +  i (WbCb)k 41 ci

4i (WbCb)i +i j + 4i (WbCb)j 4 jj + 4i (WbCb)k 4k4j

4i (WbCb)i 4i k + 4 (WbCb)j c + 4i+ (WbCb)k 4k k

4j (WbCb)i i 4j + 4j (WbCb)j 4j 4j + 4j (WbCb)k 4k4j

4j (WbCb)i 4i k + 4j (WbCb)j j k + 4j (WbCb)k 4k k

k (WbCb)i 4i k + k (WbCb)j 4j k + k (WbCb)k k k

Equation A.59 is symmetric and must be integrated over the area of finite element e.

Since (WbCb)i, (WbCb)j, and (WbCb)k are not functions of area, they can be taken outside

the integrals. With the aid of Eqs. A.36, A.44, A.45 and A.46, integrations in Eq. A.56

can be evaluated. The integration of Eq. A.56 gives the element perfusion matrix B(e)

0)ik Row i

267

jk Rowj

Row k

(A.59)

(A.60)

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)
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Pu fLk Row i

fi.u i jk Rowj

B (e) =

P. k P Rowk

(A.66)
o0

In Eq. A.66,

J3i = [ 3(WbCb)i + (WbCb)j + (WbCb)k ] A(e)
30

fly = [ 2(WbCb)i + 2 (WbCb)j + (WbCb)k A (e)
60

IPik = [ 2 (WbCb)i + (WbCb)j + 2 (WbCb)k ] A (e)
60

jj = [ (WbCb)i + 3 (WbCb)j + (WbCb)k A (e)30

jk= [ (WbCb)j+a + 2 (wbcb)k I()
60

kk = [ (wbcb) + (WbCb)j + 3 (WbCb)k ] A()
30

The element perfuwion matrix B(e) is also a symmetric matrix.

Generation Vector

The element generation vector g(e) is given by (Myers 1987)
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g(e) = JTisse(e)W gd(A.67)

Let the energy rate (of dissipation and/or absorption) g"' be a linear function within finite

element e as defined by

it

g gi g1  gkJ S 1 = Sigi"+ jgJ+ kgk' (A.68)

LkJ

In Eq. A.68, gi , 9j, and gk are the energy rates per unit volume at nodes i, , and k,

respectively. As in Eq. A.34, A.49 and A.57, 8i/(x,y), 3j (x,y), and 8 k (x,y) are

interpolating functions to help find the energy rates at points inside the elements. As in

the development of the element capacitance matrix C, thermal conduction matrix K and

tissue perfusion matrix B with variable properties, 5i (xy)= 'i, Sj (xy) = j,

8k (x,y) = lk. Therefore Eq. A.68 becomes

g= +igj + jgj" + 4kgk (A.69)

where i, j, and k are the area coordinates for element e.

Substituting Eq. A.69 into Eq. A.67 gives



g(e) - 11 (e)

+ +, i g i g

Uai" + jbkgj + k g

The integrations in Eq. A.70 can be evaluated using the relation given in Eq. A.36. The

energy generation vector is then given by

(e) = A(e)

12

2g"+gj +gk

gi + 2gj + gt

gi + gj +2gL

Row i

Row]

Row k

Perfusion Vector

The element perfusion vector b(e) is given by

b(e) = iTissue(e)WWbCbTb dA

(A.71)

(A.72)

As in Eq. A.57, let WbCb be a linear function within an element. The blood temperature

Tb can be taken outside the integral as it will be held uniform over the region. After

substitution of Eq. A.57 into Eq. A.72, the integration of Eq. A.72 is similar to the

integration of Eq. A.70 with the tissue perfusion parameter WbCb taking the place of

energy rate per unit volume g"1. The tissue perfusion vector is given by

270

dA

Row i

Rowj

Row k

(A.70)



271

" 2 (WbCb ) i + (WbCb )j + (WbCb )k Row i
(WbCb ) i + 2(WbCb )j + (WbCb ) k Rowj

(e) TrbA(e)
12

(WbCb ) i + (WbCb )j + 2(WbCb ) k Row k (A.73)

A.2.2.2 Boundary Segments

The next step in the finite element formulation is to evaluate qo in Eq. A.7 as

given by Eq. A.13. Myers (1989) has shown that the boundary segments can be broken

up into specified heat-flux boundaries for segments having a specified heat flux and

convective boundary segments that have a convection boundary. Thus Eq. A. 13 can be

given by

NB NBk [NB, Td T 1.4
= IfIB(bqW qs ds + I IB(bh h T., ds - [:IB(bh)w h w T (

bq=1 ha= 1 bk= 1

In Eq. A.74, qs" is the specified heat flux at boundaries with a heat flux, while at
4

convection boundaries, the energy into boundary segments from outside the region is

given by qo = h (T. - 7). Myers (1989) defined a boundary-segment heat flow vector

q(bq), a boundary-segment convection vector h(bh), and a boundary-segment convection

matrix H(bs) as

q(bq) = B(bq)w q"' ds h(bh) - J B(bh)wh T,. ds H(bh) - JB(bh)wh wT ds

With these relations for q(br), h(bh) and H(bk), Eq. A.74 becomes
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NBq NBA [NBA

qo = q(bq) + Ih(bs)_ - H(b T = q + h - HT (A.75)
bq=i + b= [bk=i

In Eq. A.75, the summation of q(bq), h(b0k), and H(bh) over all appropriate boundary

segments are given by q, h and H, respectively.

A.2.2.2.1 Uniform Properties along Boundary Segment

Specified heat flux

The value of the heat flux q" will be assumed uniform along a boundary segment.

Myers (1989) has shown that the integration of boundary-segment heatflow vector q(bq)

q(bq) = Ibq) w qs ds

gives

(b) 5s(bq) 1 Row i

q(bq) = S 1VRow]
2 (A.76)

In Eq. A.76, s- is the distance from node i to nodej.

Convection

The value of the convective heat transfer coefficient h and the fluid temperature at

a large distance from the surface T.. will be assumed constant along the boundary. Myers

(1989) has shown that the boundary-segment convection vector in Eq. A.75 is given by
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h(bh)t(b)s $(b) 1 Row i

2 (A.77)

Also, Myers (1989) has shown that the boundary-segment convection matrix is given by

H(bk) h (bh)SVi(bit)

6

2

1

1 Row i

2 Rowj

0
U

A.2.2.2.2 Variable Properties along Boundary Segment

The values of the specified heat flux qs', the convective heat transfer coefficient h,

and the temperature at a large distance from the outer boundary T. will be variable along a

boundary. The values of qs , h and T. are scalar values that are functions of x and y

along a boundary.

Specified heat flux

The boundary-segment heatflow vector q(br) is given by (Myers 1987)

q(bq) = IB(bq)W q"ds(A.79)

(A.78)
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This will be integrated along the boundary segment bq. The boundary segment is the

distance from node i to node j. Let the heat flux qs along the boundary" segment be a

linear function as defimed by

q.. ...[q q 8ij = qsi+8qsj (A.80)

In Eq. A.80, qsi and qs. are the heat fluxes at nodes i andj. As in Sec. A.2.2.1.2,

6i (x,y) = i, qj (x,y) = 4j, (x,y) -=k, and so Eq. A.80 becomes

q = i qsi +jqsj (A.81)

Substituting Eq. A.81 into Eq. A.79 gives

q(bq) + j qjds (A.82)

B(bq) 4ii qsi + 42 qsj

Notice that j =0 at node i and 4j = 1 at nodej. Therefore,

S =- S

ds= sijdaj = s-jf daj = sij

sS i 4=o04 f4=ofi(A.83)

Changing the limits of integration in Eq. A.82 with the use of Eq. A.83 gives



1i qsi + 4i

q(bq) = Sil ( [ 2 q + +

j

d~j

Since 4i + 4j = 1, 4i can be substituted for in Eq. A.84 to give

q(bq) = sj
L[(1- j)2 qs + (1- j) j q;, I d j

(1- 4j)4j qsi + 4jqsj

The integration of Eq. A.85 with respect to j gives

qbq) 2 qsi + qsj

6 qsi 2qsjj

Convection

The boundary-segment convection matrix H(bh) is given by (Myers 1987)

H(bi) = JB(bA)Wh WT ds

(A.85)

(A.86)

(A.87)

Equation A.87 will be integrated along the boundary segment bh. Let the heat transfer

coefficient h along the boundary segment be a linear function as defined by

275

(A.84)
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h =[h i h] i =6ihi+6jhj (A.88)

In Eq. A.88, hi and hj are the heat transfer coefficients at nodes i and]. As earlier,

8i (x,y) = i and 6j (xy) = 4j, and so Eq. A.88 becomes

h = 4 + jhj(A.89)

Substituting Eq. A.89 into Eq. A.87 gives

H(bh) = (i2'hi + h "ijhi + j3 Jds(A.90)

Applying the relation given in Eq. A.83 to Eq. A.90 and then integrating gives

H(b) j s( [( 3hj + h,) (hi + h ) 1)
1--i (hi+ h) (hi+ 3hj) (A.

The boundaiy-segent convection vector h(be) is given by

h(bh) = IB(b)wh T.. ds (A.92)

The ambient temperature T.. is not a function of the boundary segment length and can be

brought outside the integral. In general, though, T.. can be a function of time. The heat

transfer coefficient will be integrated along the boundary length and can be defined by Eq.
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A.89. Substituting Eq. A.89 into Eq. A.92 and then applying the relation given in Eq.

A.83 gives

h (b h) = T,, $i2h 2 + - h(A

J f 4ihi +4j2h

Since the integration of Eq. A.93 is identical to the integration of Eq. A.84, the result is

obtained directly

h(bh) = T si [ 2hi + h, 1
6 hi + 2hj (A.94)

A.2.2.3 Specified Temperature

By combining all of the contributions from each interior element (Sec. A.2.2. 1)

and each boundary segment (Sec. A.2.2.2), Eq. A.7 may be written as a system of

ordinary differential equations

CT + (K + B + H)T = g + b + q + h (A.95)

In expanded form Eq. A.95 looks like
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Cii

Cli

+
K11

where ic is an entry in (K + B +1H) rather than (K + B) and g is an entry in (g + b + q +

h) rather than (g + b).

Myers (1989) has shown that if the temperature at node i is specified to be Ti,p,,

the differential equation in row i will be

ciTi + ii T i = iiTi,sp

With a specified temperature at node i, the global set of differential equations is now given

by

Cii

Cli

+

K11i

K Tis
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where the off-diagonal terms in row i are now 0. To maintain the symmetry of (K + B +

H), the off-diagonal entries in column i in (K + B + H) are set to zero. This is done by

transferring the off-diagonal entries in (K + B + H) to the right-hand side of the system

of equations and replacing cli by 0 in C. After making this modification, the system of

differential equations becomes

C ii TiKii T KiiTi, sp
+=

0 0 g- Kli T

The modified system of equations is now given by

CT7f+ ST=r (A.96)

In Eq. A.96, (C, S (= K + B + H) and r (= g + b + q + h) are as modified for specified

temperatures.

A.2.3 Temperature Determination

A.2.3.1 Uniform Properties

For steady-state problems, the time derivative of temperature is zero and Eq. A.96

reduces to
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ST = r (A.97)

Equation A.96 is no longer a system of ordinary differential equations but is now a

system of algebraic equations given by Eq. A.97. The equation solving routine in FEHT

(FEM2D) determines T in Eq. A.97 by inverting S using the Cholesky square-root

decomposition method (Myers 1989).

Solutions to time-dependent problems are obtained by solving the system of

ordinary differential equations given by Eq. A.96. FEHT solves this system of equations

with given initial conditions using either the Euler or Crank-Nicolson methods (Myers

1989).

A.2.3.2 Variable Properties

The solution of Eq. A.97 to determine the steady-state temperature distribution for

tissues with uniform properties requires only one matrix inversion of S. However, for

properties that are dependent on temperature, an iterative solution process is necessary.

(Recall that S and r can contain material, thermal, tissue perfusion, generation and

boundary conditions that depend on temperature.) Initially, the properties that vary with

temperature are specified with guessed values and then S and r are formed. Next the

temperatures in T are determined using the method described in Sec. A.2.3.1. Then the

properties that vary with temperature are recomputed with the known temperatures. If the

newly computed properties differ from the guessed values, S and r are reformed using

the average of the old and new temperatures to evaluate the properties. Again the

temperatures in T are redetermined. This iterative process continues until all properties

that vary with temperature converge.
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The solution of the system of ordinary differential equations given by Eq. A.96 to

determine the transient temperature distribution for tissues with uniform properties

required only one inversion of S at each time step. For properties that depend on

temperature, the temperatures from the last time step are used for evaluation of properties

at the next time step.

A.2.4 Heat-flow and Nodal Energy Balance

Once Eq. A.96 has been solved for the nodal temperatures, the heat fluxes within

the tissue, the heat flows at the boundary of the tissue, and the nodal energy balances can

be determined.

Myers (1989) gives an energy interpretation of Eq. A.95 without the perfusion

terms B and b. The form of Eq. A.95 considered here is given by

g+(b-BT)+q+(h-HT)=CT +KT (A.98)

The left-hand-side of Eq. A.98 gives the sum of the energy generation plus the perfusion

inflow plus the specified heat inflow plus the convection inflow to each of the finite

element nodal systems. The vector (b - BT) will contain zeros for all nodes if there is no

tissue perfusion. The vector (h - HT) will contain zeros for all of the interior nodes and

for all of the boundary nodes not along a convective boundary. The right-hand-side of

Eq. A.98 gives the energy-storage rate in each nodal system plus the conduction out of

each nodal system into the surrounding nodal systems. Thus Eq. A.98 represents an

energy balance on each of the finite-nodal systems.

The boundary-heat inflow may be computed from
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qo=CT +(K +B)T-g-b (A.99)

The entries in qo will be 0 (within numerical precision of the device used to compute it)

for internal nodes that are not specified-temperature nodes. For internal nodes with a

specified temperature, qo *0, rather qo provides an energy balance on the finite-sized

tissue system surrounding the specified temperature node (Myers 1989).
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Appendix B

Accuracy of Numerically Computed Temperatures

As with any software program, numerically predicted solutions should be

compared with analytical solutions which are exact. The analytical temperature

distribution in a square tissue model is derived in Sec. B.1. A comparison of the

analytically-derived temperature distribution with the solution predicted by FEHT is

shown in Sec. B.2. An error analysis of the temperature distribution predicted by FEHT

is provided in Sec. B.3.

B.1 Analytical Temperature Distribution

The analytical steady-state temperature distribution was determined in the two-

dimensional, square homogeneous tissue system with length a (Fig. B. 1). In Fig. B. 1

there are three constant temperature boundaries at x = 0, x = a and y = a and the

temperature at the y = 0 boundary varies sinusoidally with position. Equation 2.2 was the

energy equation used to determine the temperature distribution. Recalling that the

parameter n equals wbCb/kt (Eq. 3.1) and setting O(xy) = T(x,y) - Tb , Eq. 2.2

becomes

X2 y2(g1
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y

T(0,y) Tb #

r

T (x, a) = Tb

T (a,y)=Tb

x

a

T(x,0) = T sin (n /xa) + Tb

Figure B.1 Boundary conditions of tissue model. There are three
constant temperature boundaries at x = 0, x = a and y = a. The
temperature at y = 0 varies sinusoidally with position along x.

The boundary conditions of Eq. B. 1 are shown in Fig. B.2. The objective is to solve Eq.

B. 1 for the boundary conditions shown in Fig. B.2.

4

-V

B(0,y) =0

O(x, a) =0

o(a, y) =0

x

a

/
o(x, 0)= Tm sin (n x/a)

Figure B.2 Boundary conditions for Eq. B.1.
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Equation B. 1 is linear since it contains no products of the dependent variable or its

derivatives (e.g., (0')2 or (78). Equation, B.1 is also homogeneous since it is also

satisfied by cq where c is an arbitrary constant (c = 0 is a special case). The boundary

conditions given in Fig. B.2 are linear since they contain no products of the dependent

variable or its derivatives. The boundary condition at y = 0, however, is

nonhomogeneous since that boundary condition is not satisfied by cO.

The classical method of the separation of variables (Myers 1987) was used to

solve Eq. B.1. Since Eq. B.1 is a linear, homogeneous partial-differential equation, it

can be integrated assuming a product solution for 0 (x, y) of the form

0 (x, y) = X(x) Y(y) (B.2)

where X(x) is a function of x only, and Y(y) is a function of y alone. After some effort

the analytical temperature distribution was found to be

sin ( a"a ) sinh(n2+-X2 (a y)]
T (x, y) = Tm aX2 + Tb (B.3)

sinh [( n2 + -a- )1/2 a]

B.2 Comparison of Analytical and Numerical Temperatures

The analytically-derived temperature distribution given by Eq. B.3 was compared

to the temperature distribution computed by FEHT. The comparison was performed on a
square tissue model with a = 0.1 m and with an n2 value of 10,000. (An n2 value of

3130 is typical for blood flow through normal muscle tissue at body temperature.)

Arterial blood temperature Tb was 37 C and the amplitude of the sinusoidally-varying



286

surface (at y = 0) temperature Tm was 23 C. This gave a maximum temperature of 60 C

at the midpoint along the x-axis. A temperature of 60 C is near the upper limit of the

operating temperature of thermoseeds used in hyperthermia treatments. The temperature

distribution calculated with FEHT was performed with a mesh of 1024 finite elements.

Figure B.3 is a plot of several analytically- and numexically-computed isotherms between

38 and 58 C.

100

75

,50

25:

0
0 25 50 75

Distance, x (mm)
100

Figure B.3 The 38, 42, 46, 50, 54 and 58 C isotherms as predicted analytically (dashed
lines) and numerically with FEHT (solid lines). The analytical solution was computed
using Eq. B.3 with boundary conditions given in Fig. B.2. The solution predicted with
FEHT was determined using a mesh of 1024 finite elements.
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B.3 Error Analysis of Numerically Computed Temperature Distribution

An error analysis of the temperature distribution predicted with FEHT was

performed. The error was based on the difference in temperature between the analytical

solution and the FEHT solution at 25 locations within the square, simulated tissue

system. The 25 locations coincide with the interior nodal points of the finite element

mesh in Fig. B.4. Since the accuracy of the numerical solution will depend on the

number of finite elements, discretizations of 64, 256 and 1024 finite elements were

evaluated. The mesh of 256 elements was created by reducing uniformly the mesh of 64

elements. The mesh of 1024 elements was created by reducing uniformly the mesh of

256 elements. The errors were determined for n2 values of 0, 1, 10, 100, 1000, and

10,000.

y
y ==O mT (x, a) Tb \

T (0 y) = Tb  T (a., y) f Tb

x=a =O.lm

T(x,O)=T,sin (x/a) + Tb

Figure B.4 Finite element mesh with 64 triangular elements and 41 nodes (open
circles). This is a mesh of the simulated tissue system shown in Fig. B.2.



288

An estimate of the error was computed using several norms (Strikwerda 1989).

The l (or maximum) norm is given by

[Fj* = max1 .25IT - TI (B.4)

where i is one of the 25 interior nodal locations in Fig. B.4. The l" norm gives the

largest temperature difference between the analytical Ti and the numerical Ti solutions.

The error in the 10 norm is shown in Fig. B.5. For values of n2 studied, the l* norm

decreased by approximately 77% as the number of finite elements increased from 64 to

256. As the number of elements increased from 256 to 1024, the 1I0 norm decreased by

73%. Error in the l* norm decreased by 72%, 70% and 67% with 64, 256 and 1024

finite element, respectively, when n2 decreased from 10,000 to 1000.

0.6

0.5 n 2=0

8
0.4 n2 =0,1,10andlOO

z 0.3-

0.2
It)

C4)

0.1 C4

0.01-

1 200
2=1000

1200

Number of Finite Elements

Figure B.5 Error in the l (or maximum) norm. The l" norm was computed with Eq. B.4.
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The 12 (or Euclidean) norm is a summation of the error over all 25 interior

locations and is given by

ITI = [hm, ( 25 (- T.1
i= i (B.5)

In Eq. B.5, the diameter of the largest circle inscribed within any finite element in the

mesh is hmax. The error in the 12 norm is shown in Fig. B.6. The error in the 12 norm

decreased by approximately 84% as the number of finite elements increased from 64 to

256. As the number of elements increased from 256 to 1024, the error decreased by

80%. The error in the 12 norm decreased by 55, 55 and 50% with 64, 256 and 1024

0.20

0.15 n 2n=10,000

n1 2 =0,1,
n201,10 and 100

r = 2.62

0.10

z

1 0.05
m 2.52 Ie

r =2.55

2.0 200/ 400 600 800 1000 1200

2 = 1000 r = 2.37 Number of Finite Elements

Figure B.6 Error in the 12 norm. The error in the l2 norm was computed with Eq. B.5.
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elements, respectively, when n2 decreased from 10,000 to 1000.

Theoretically, as hmax approaches zero, the finite element solution will converge

to the exact solution (Burnett 1987). This form of convergence is known as h-

convergence since it is achieved by letting the size of the elements become progressively

smaller. For linear finite elements, the theoretical rate of convergence for ordinary

function points such as nodal temperatures is 0(h 2). Therefore as h-refinement is

performed on the mesh shown in Fig. BA, the rate of convergence should approach 2.

The rate of convergence, r, is computed using

Error 2 (h1) _ C (hl)r  (B.7

Error12 (h2 ) - C (h2 )r

In Eq. B.7, Error, 2 is the error in the Euclidean norm; hl and h2 are the diameters of the

largest circles inscribed within fimite elements in meshes 1 and 2, respectively; and C is a

constant. The constant C vanishes when the computation to determine r is performed. In

Fig. B.6, the rate of convergence between meshes 1 and 2 is 2.62 and 2.55 for n2 values

of 10,000 and 1000, respectively. The convergence rate between meshes 2 and 3 is 2.52

and 2.37 for similar n2 values. Thus r began to approach 2 for decreasing h,,a.



291

Appendix C

Cell Survival Determination

Appendix C contains input and output of the Mathematica software program

(Wolfram et al. 1988) which was used to evaluate several integrations in Chapter 5.

C.1 Solution to Eqs. 5.6 and 5.9

The following is the input and output from Mathematica that were used to solve

for Eqs. 5.6 and 5.9:

kt = 0.642; (Thermal conductivity of tissue, W/m-C)
wbcb = 3720; (Tissue perfusion * Specific heat of tissue, W/m^3-C)
tb = 37; (Blood temperature, C)
n = Sqrt[wbcb/kt]; (Nondimensional term in Eq. 3.4)
ri = 0.00045; (Inner radius of cylindrical tissue system, Fig. 3.1)
rseed = 0.00045; (Radius of thermoseed, m)
ro = 0.1; (Outer radius of cylindrical tissue system, Fig. 3.1)
r42 =0.008072; (Radius of the 42 C isotherm in Fig. 3.1, m
r =r42;
SeedPower=- 26.513; (Power per unit length of thermoseed, W/m, for 60 C
Thermoseed)
Aseed = Pi*rseedA2; (Area of thermoseed, mA2)
I1 = BesselI[l, n ri]; Bessel function)
KO = BesselK[0, n ro]; (Bessel function)
IO = Bessell[0, n no]; (Bessel function)
Ki = BesselK[1, n ri]; (Bessel function)
Denom = I1*KO + I0*K1; (Numerical constant)
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Cl = ( SeedPower*ri / (2*Aseed*n*kt*Denom)) * BesselI[0, n ro]; (Numerical
constant)
C2 = ( SeedPower*ri I (2*Aseed*n*kt*Denom)) * BesselK[0, n ro]; (Numerical
constant)
Delt = Cl*BesselK[0, n r] - C2*BesselI[O, n r]; (Temperature given by Eq. 3.4)
TissueTempAtr = Delt + tb; (Tissue temperature at 42 C isotherm)
N[TissueTempAtr,8]
42.000394
r = .
Delt = Cl*BesselK[0, n r] - C2*BesselI[0, n r]; (Temperature given by Eq. 3.4)
Tumora = 86; (Coefficient in Eq. 5.2 for survival of tumor tissue)
Tumorb = -2; (Coefficient in Eq. 5.2 for survival of tumor tissue)
Normala = 44; (Coefficient in Eq. 5.2 for survival of normal tissue)
Normalb = -1; (Coefficient in Eq. 5.2 for survival of normal tissue)
rtumor = 0.005; (Radius of tumor, m)
TumorTissueArea = Pi*(rtumor12 - rseedA2) / 3; (Tumor area)
IntegratedTumorAreaAbove42 = Pi*(rtumor"2 - rseedA2) / 3; (Tumor area above 42 C)
NormalTissueArea = Pi*(roel2 - rtumor'2) / 3; (Normal area)
IntegratedNormalAreaAbove42 = Pi*(r42A2 - rtumorA2) / 3; (Normal area above 42 C)
TumorIntegral =

Nlntegrate[r 10A(Tumora + Tumorb*(tb + Delt)),
(r, rseed, rtumor),

MinRecursion -> 2,
WorkingPrecision -> 20,
AccuracyGoal -> 10]; (Numerical integration of integral in

numerator of Eq 5.7)
NormalIntegral =

Nlntegrate[r l0A(Normala + Normalb*(tb + Delt)),
(r, rtumor, r42),

MinRecursion -> 2,
WorkingPrecision-> 20,
AccuracyGoal -> 10]; (Numerical integration of integral in

numerator of Eq. 5.7)
TumorTissueAreaBelow42 =0;
TumorTissueAaAboveA2 = TumorTissueArea- TumorTissueAreaBelow42;
PercentTumorTissueAreaAbove42
(TumorTissueAreaAbove42/TumorTissueArea)* 100;
NormalTissueAreaBelow42 = Pi * (ro"2 - r42^2) / 3;
NormalTissueAreaAbove42 = NormalTissueArea - NormalTissueAreaBelow42;
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PercentNormalTissueAreaAbove42
(NormalTissueAreaAbove42/NormalTssueArea)* 100;
PercentNormalSurvival - (2*Pi/3) * NormalIntegra
IntegratedNormalAreaAbove42;

[Calculation of Eq. 5.8 for normal tissue)
PercentTumorSurvival = (2*Pi/3) * TumorIntegral
IntegratedTumorAreaAbove42;

(Calculation of Eq. 5.8 for tumor tissue)
PsiTumorKill = ( (1 - PercentTumorSurvival/100)
IntegratedTumorAreaAbove2 )/TumorTissueArea;

(Calculation of Eq. 5.9)

1 /

/

PsiNormalKill = ( (1 - PercentNormalSurvival/100)
IntegratedNormaLAreaAbove42 )/TumorTissueArea;

(Calculation of Eq. 5.9)
WF = 0.8; (Weighting function for tumor tissue)
F = WF*PsiTumorKill- (1-WF)*PsiNormalKil
0.5508493017385405299
PercentTumorTissueAreaAbove42
100.
PercentNonnalTissueAreaAbove42
0.402578285714285706
PercentTumorSurvival
0.00003825884731179527651
PercentNomalSurvival
23.07345492218264737
PsiTumorKill
0.9999996174115268822
PsiNormalKill
1.245751960953404879
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C.2 Symbolic form of Solution to Eqs. 5.6 and 5.14

The following is the input and output from Mathematica that were used to solve

for the symbolic form of the solutions to Eqs. 5.6 and 5.14:

xi=1
yi=9

xj =9
yj = 1
xk = 11.9282032
yk = 11.9282032

ti=.

tj
tk=.

a=.
b=.

xij =xj- xi
xik =xk- xi
xjk = xk- xj
yij =yj-yi
yik=yk-yi
yjk = yk- yj
bijk = xij*yjk - xjk*yij
Areaelem = 0.5 * bijk

al = (1/bijk) * ((xj*yk - xk*yj)*ti + (xk*yi - xi*yk)*tj + (xi*yj - xj*yi)*tk)
a2 = (1/bijk) * (-yjk*ti + yik*tj - yij*tk)
a3 = (1/bijk) * (xjk*ti - xik*tj + xij*tk)

ml = (yk-yi)/(xk-xi)
bi = yk-.(m1*xk)
m2. = (yj-yi)/(xj-xi)
b2 = yj - (m*xj)
m3 = (yk-yj)/(xk-xj)
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b3 = yk -(m3*xk)

Fl=ntegrate[ 1.(abal-ba2x-ba3y),x,xi,xj},{y,m2x +b2,mx+ bi)]
F2 = Integrate [ l0.A(a - b al - b a2 x - b a3 y),(x,xj,xk}{y,m3 x + b3, ml x + bl}]

PerSurvival = (Fl + F2)/Areaelem

0.01804219599101827729*(0. +
(20.90784260469270498*EA

(2.302585092994045684*
(a - 0.009021097995509138647*b*

(95.42562560000000001*ti + 95.42562560000000001*tj -

80*tk) - 0.1076054899775456932*b*
(2.9282032*ti - 10.9282032*tj + 8*tk) -
0.1076054899775456932*b*
(-10.9282032*ti + 2.9282032*tj + 8*tk))))/

(b*(2.9282032*ti - 10.9282032*tj + 8*tk)*
(-0.0336671963141207395*b*
(2.9282032*ti - 10.9282032*tj + 8*tk) -
0.009021097995509138647*b*
(-10.9282032*ti + 2.9282032*tj +8*tk))) -

(20.90784260469270498*EA
(2.302585092994045684*

(a- 0.009021097995509138647*b*
(95.42562560000000001*ti + 95.42562560000000001*tj -

80*tk) - 0.009021097995509138647*b*
(2.9282032*ti - 10.9282032*tj + 8*tk) -
0.08118988195958224783*b*
(-10.9282032*ti + 2.9282032*tj + 8*tk))))/

(b*(2.9282032*ti - 10.9282032*tj + 8*tk)*
(-0.0336671963141207395*b*

(2.9282032*ti - 10.9282032*tj + 8*tk) -
0.009021097995509138647*b*
(-10.9282032*ti + 2.9282032*tj + 8*tk))) -

(20.90784260469270498*EA
(2.302585092994045684*
(a - 0.009021097995509138647*b*

(95.42562560000000001"ti + 95.4256256000000000l*tj -

80*1k) - 0.1076054899775456932*b*
(2.9282032"ti - l0.9282032"tj + 8*1k) -

0. 1076054899775456932"b*
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(-10.9282032*ti + 2.9282032* + 8*tk))))/
(b*(2.9282032*ti - 10.9282032* + 8*tk)*
(-0.002417195904443234128*b*

(2.9282032*ti - 10.9282032* + 8*tk) -
0.009021097995509138647*b*
(-10-9282032*ti + 2.9282032* + 8*tk))) +

(20.90784260469270498*EA
(2.302585092994045684*
(a- 0.009021097995509138647*b*

(95-42562560000000001*ti + 95.4256256000000000i*
80*tk) - 0.08118988195958224783*b*

(2.9282032*ti - 10-9282032* + 8*tk) -
0.009021097995509138647*b*
(-10.9282032*ti + 2.9282032* + 8*tk))))/

(b*(2.9282032*ti - 10.9282032* + 8*tk)*
(-0.002417195904443234128*b*

(2.9282032*ti - 10.9282032*tj + 8*tk) -
0.009021097995509138647*b*
(-10.9282032*ti + 2.9282032*tj + 8*tk))) +

(20-90784260469270498*EA
(2.302585092994045684*
(a- 0.009021097995509138647*b*

(95-42562560000000001*ti + 95-42562560000000001*
80*.tk) - 0.009021097995509138647*b*

(2.9282032*ti - 10.9282032* + 8*tk) -
0.08118988195958224783*b*
(-10.9282032*ti + 2.9282032*tj + 8*tk))))/

(b*(2.9282032*ti - 10.9282032* + 8*tk)*
(0-009021097995509138647*b*

(2.9282032*ti - 10.9282032* + 8*tk) -
0.009021097995509138647*b*
(-10.9282032*ti + 2.9282032*tj + 8*tk))) -

(20-90784260469270498*EA
(2.302585092994045684*
(a- 0.009021097995509138647*b*

in C A 01 C401 CZfVVVVVVVV't 1 *,1.: a A C A n C ACOI CCfVVVVVVVV%
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(b*(2.9282032*ti - 10.9282032* + 8*tk)*
(0-009021097995509138647*b*

(2.9282032*ti - 10.9282032* + 8*tk) -
0.009021097995509138647*b*
(-10.9282032*ti + 2.9282032* + 8*dc))))
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C.3 Particular Solutions to Eqs. 5.6 and 5.14

The followintg is the input and output from Mathematica that were used to solve

for particular solutions of Eqs. 5.6 and 5.14:

xi=1
yi =.
xj =9
yj = 1
xk = 11.9282032
yk = 11.9282032

ti = 43.00001
tj = 43.000001
tk = 43.0000001

a=44
b=l

xij = xj- xi
xik = xk-xi
xjk=xk- xj
yij = yj - yi
yik =yk- yi
yjk=yk-yj
bijk = xij*yjk - xjk*yij
Areaelem = 0.5 * bijk

al = (1/bijk) * ((xj*yk - xk*yj)*ti + (xk*yi - xi*yk)*tj + (xi*yj - xj*yi)*tk)
a2 = (1/bijk) * (-yjk*ti + yik*tj - yj*tk)
a3 = (1/bijk) * (xjk*ti - xik*tj + xij*tk)

ml = (yk-yi)/(xk-xi)
b1= yk - (ml*xk)
m2 (yj-yi)/(xj-xi)
b2 = yj - (rn2*xj)
m3 = (yk-yj)/(xk-xj)
b3 = yk - (mn3*xk)
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Fl = Integrate [ l0.^(a - b al - b a2 x - b a3 y),(x,xi,xj),(y,n2 x + b2, mlx + bl)]
F2 = Integrate [ l0.^(a - b al - b a2 x - b a3 y),(x,xj,xk},by,m3 x + b3, ml x + bi)]
PerSurvival = (F1 + F2)/Areaelem
PerSurvivalTable = Table[ (yi,N[PerSurvival, 20] ), (yi,9,69,10)]

PerSurvivalTable = Table[( yiN[PerSurvival,20] , (yi,9,69, 10)]

ListPlot [{(xi, 9), (xj,yj), (xk,yk), (xi,9),
(xjyj),{xk,yk), {xi,39),
{xj,yj ),{xk,yk), (xi,69),
(xjyj)),

AxesLabel->{" x coordinate", "y coordi
PlotLabel->" Finite Element",
AspectRatio->0.75,
PlotJoined->True,
PlotRange->( *(0,12),(0,80) ]

inate 11 )

ListPlot[PerSurvivalTable,
AxesLabel->{" y coordinate","Survival "

Plotdabel->" Percent Survival",
Framed->False,
PlotColor->True,
PlotJoined->True,
AspectRatio->,
PlotRange->{ 0,100),(9,11 1]

ListPlot[PerSurvivalTable,
AxesLabel->{" y coordinate","Survival " }
PlotLabel->" Percent Survival",
Framed->False,
PlotColor->True,
PlotJoined->True,
AspectRatio-> 1,
PlotRange->{ (0,100},(9.9999110,9.9999180)1]
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DerPerSurvival = D[PerSurvival,yi]
DerPerSurvivalTable - Table[ [yiN[DerPerSurvival,20] },

(yi, 9,69,10)]

ListPlot[DerPerSurvivalTable,
AxesLabel->{" y coordinate","Survival " },
PlotLabel->" Percent Survival Derivative",
Framed->False,
PlotColor->True,
PlotJoined->True,
AspectRatio-A,
Plotdabel -> "Percent Survival Derivative",
PlotRange-> f{({ 0,100 } 1 * 101(- 8),97 * 1 0(- 8))}}

xi= 1
yi =.
xj =9
yj= 1
xk = 11.9282032
yk = 11.9282032

ti = 42.
tj = 44.
tk = 46.

a=44
b=1

xij =xj-xi
xik =xk-xi,
xjk =xk - xj
yij =yj- yi
yik =yk- yi
yjk = yk - yj
bijk = xij*yjk - xjk*yij
Areaelem = 0.5 * bijk

al = (1/bijk) * ((xj*yk - xk*yj)*ti + (xk*yi - xi*yk)*tj + (xi*yj - xj*yi)*tk )
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a2 = (1/bijk) * (-yjk*ti + yik*tj - yij*tk)
a3 = (l/bijk) * (xjk*ti - xik*tj + xij*tk)

ml = (yk-yi)/(xk-xi)
bl =yk -(ml*xk)
m2= (yj-yi)/(xj-xi)
b2 = yj -(2*xj)
m3 = (yk-yj)/(xk-xj)
b3 = yk - (m3*xk)

F1 = Integrate [ 10.^(a - b al - b a2 x -b a3 y),(x,xi,xj),(y,m2 x + b2, ml x + bll}]
F2 = Integrate [ 10.^(a - b al - b a2 x - b a3 y),,(x,xjxk),{y,m3 x + b3, ml x + bi)]
PerSurvival = (F1 + F2)/Areaelem
PerSurvivalTable = Table[ { yi,N[PerSurvival, 20]), { yi,9,69,10)]

ListPlot[PerSurvivalTable,
AxesLabel->{" y coordinate","Survival "9

PlotLabel->" Percent Survival",
Framed->False,
PlotColor->True,
PlotJoined,>True,
AspectRatio->0.75,
PlotRange->{ {0,100},{4,5) 1

ListPlot[PerSurvivalTable,
AxesLabel->{" y coordinate","Survival "

Plotdabel->" Percent Survival",
Framed->False,
PlotColor->True,
PlotJoined->True,
AspectRatio->l,
PlotRange->{ (0,100),,(4.62145810602707020,

4.62145810602707042)) ]

DerPerSurvival = D[PerSurvival,yi]
DerPerSurvivalTable = Table[ { yi,N[DerPerSurvival,20] 1,

{yi, 9,69,10)]
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ListPlot[DerPerSurvivalTable,
AxesLabel->{" y coordinate"," " },
PlotLabel->" Percent Survival Derivative",
Framed->False,
PlotColor->True,
PlotJoined->True,
AspectRatio->l,
PlotLabel ->" Percent Survival Derivative",
PlotRange->{ 0,2100),2-1"10A(-18),1"10^(-18)} }]

xi=1
yi=1
xj = 10
yj = 1.000001
xk = 10.0000001
yk = 5

ti = 42.
tj =44.
tk = 46.

a=44
b=1

xij =xj-xi
xik xk-xi
xjk = xk-xj
yij =yj- yi
yik =yk- yi
yjk =yk - yj
bijk = xij*yjk - xjk*yij
Areaelem = 0.5 * bijk

al = (1/bijk) * ((xj*yk - xk*yj)*ti + (xk*yi - xi*yk)*tj + (xi*yj xj*yi)*tk)
a2 = (l/bijk) * (-yjk*ti + yik*tj -yij*tk)
a3 = (lfbijk) * (xjk*ti - xik*tj + xij*tk)

ml = (yk-yi)/(xk-xi)



303

bi =yk - (ml*xk)
m2 = (yj-yi)/(xj-xi)
b2 = yj - (m2*xj)
m3 = (yk-yj)/(xk-xj)
b3 = yk-(m3*xk)

F1 = Integrate [ l0.^(a - b al - b a2 x - b a3 y),(x,xi,xj),{(y,m2 x + b2, ml x + bl}]
F2 = Integrate [ lO.^(a - b al - b a2 x - b a3 y),(x,xj,xk),{y,m3 x + b3, ml x + bl }
PerSurvival = (F1 + F2)/Areaelem

ListPlot [( (xi, yi),(xj,yj,xk,yk},(xi,yi) },
AxesLabel->(" x coordinate","y coordinate " 1,
PlotLabel->" Finite Element",

AspectRatio->.5,
PlotJoined->True,
PlotRange->{ {0,12),{0,6) }]

Node x - coordinate y - coordinate Temperature
i 1 1 42
j 10 1.000001 44
k 10.0000001 5. 46

Elemental Area = 18 units

Percent Survival - 4.62 %

xi=l
yi= 1
xj = 5
yj = 1.00001
xk= 1.000001
yk= 1

ti = 42.
tj =44.
tkc = 46.
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a=44
b-1

xij =xj-xi
xik-xk-xi
xjk = xk-- xj
yij =yj-yi
yik=yk-yi
yjk = yk -yj
bijk = xij*yjk - xjk*yij
Areaelem = 0.5 * bijk

al = (l/bijk) * ((xj*yk - xk*yj)*ti + (xk*yi - xi*yk)*tj + (xi*yj - xj*yi)*tk)
a2 = (l/bijk) * (-yjk*ti + yik*tj - yij*tk)
a3 = (l/bijk) * (xjk*ti -xk*t + xij*tk)

ml = (yk-yi)/(xk-xi)
bI =yk -(ml*xk)
m2 = (yj-yi)/(xj-xi)
b2 = yj - (m2*xj)
m3 = (yk-yj)/(xk-xj)
b3=yk -(m3*xk)

F1 = Integrate [ 10.A(a - b al - b a2 x - b a3 y),{x,xi,xj},{y,m2 x + b2, mlx + bl)]
F2 = Integrate [ 1O.^(a - b al - b a2 x - b a3 y),{x,xj,xk),(y,m3 x + b3, m.l x + bl)]
PerSurvival = (F1 + F2)/Areaelem

ListPlot [{(xi, yi),(xj,yj),xk,yk),(xiyi}j,
AxesLabel->{" x coordinate","y coordinate " }
PlotLabel->" Finite Element",

AspectRatio-> 1.0,
PlotJoined->True,
PlotRange->{ (0,6,(0,12))]

Node x - coordinate y - coordinate Temperature
i 1 1 42
j 5 1.00001 44
k 1.000001 10. 46
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Elemental Area = 18 units

Percent Survival - 4.62 %

xi=1
yi=1
xj = 5
yj = 1.00001
xk= 1.000001
yk= 10

ti = 42.
tj = 46.
tk = 44.

a=44
b= 1

xij = xj- xi
xik = xk-xi
xjk =xk -xj
yij = yj- yi
yik = yk- yi
yjk = yk - yj
bijk = xij*yjk - xjk*yij
Areaelem = 0.5 * bijk

al = (1/bijk) * ((xj*yk - xk*yj)*ti + (xk*yi - xi*yk)*tj + (xi*yj - xj*yi)*tk)
a2 = (1/bijk) * (-yjk*ti + yik*tj - yj*tk)
a3 = (1/bijk) * (xjk*ti - xik*tj + xij*tk)

ml = (yk-yi)/(xk-xi)
bl =yk -(ml*xk)
m2 = (yj-yi)/(xj-xi)
b2 = yj - (m2*xj)
m3 = (yk-yj)/(xk-xj)
b3 = yk - (ni3*xk)

Fl = Integrate [ 10.A(a - b al - b a2 x - b a3 y),(x,xi,xjj},(y,m2 x + b2, ml x + bi)}]
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F2 = Integrate [ l0.^(a - b al - b a2 x - b a3 y),(x,xj,xk),(y,m3 x + b3, ml x + bil]
PerSurvival = (F1 + F2)/Areaelem

ListPlot [{(xi, yi),(xj,yj),[xk,yk),(xi,yi),
AxesLabel->$" x coordinate","y coordinate "

PlotLabel->" Finite Element",
AspectRatio->,
PlotJoined->True,
PlotRange->{ (0,6),(0,12) }]

Purpose - Transpose the temperatures of nodes i and j

Node x - coordinate y - coordinate Temperature
i 1 1 42
j 5 1.00001 46
k 1.000001 10. 44

Elemental Area = 18 units

Result - Percent Survival is unchanged

Percent Survival - 4.62 %

ListPlot [{((1, 9),(9, 1),(11.9282032, 11.9282032){, 9)),
AxesLabel->{" x coordinate","y coordinate " },
PlotLabel->" Finite Element",

AspectRatio->1,
PlotJoined->True,
PlotRange->{ (O,15},f(0,15))]




