
  17 

Chapter 2. PV ELECTRICAL CHARACTERISTICS  

Calculating direct-coupled PV output requires a complete description of the 

current-voltage (1- V) characteristics of the PV array under all operating conditions. In 

this chapter, five mathematical models of PV current-voltage behavior are analyzed. 

Theoretical and experimental comparisons are included. Emphasis is given to a "lumped, 

single mechanism, four parameter" I-V model (hereafter, the acronym "UP" will be 

used). The term "lumped" refers to the type of approximation, and "single mechanism" 

refers to the degree of approximation used to model a PV cell with a simplified electrical 

equivalent circuit. These terms are detailed in Section 2.3.2. Of all of the models 

compared, the UP model provided the best match with experimental I-V curve data. The 

UP model was chosen to describe PV system behavior in the final model to estimate 

long-term direct-coupled PV performance.  

 

2.1 I-V Model Criteria  

There are many possible mathematical relationships of varying complexity which 

can be used to describe PV cmrent-voltage behavior. Depending on the application (in 

this case, a procedure for estimating long-teml direct-coupled PV performance), several 

factors need to be considered to assess the suitability of any particular mathematical I-V 

model.  

 

One is an inherent tradeoff between simplicity and accuracy. A primary goal of 

this work is to create a reduced set of weather data representing long-term behavior in 

order to speed calculations and reduce weather data storage requirements. An appropriate 
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I-V model, then, does not sacrifice this advantage by adding complex or lengthy 

calculation procedures. However, the I-V model needs to be capable of predicting I-V 

behavior within the same range of uncertainty as the weather data input to the model.  

 

Another important consideration is whether the data needed to use an I-V model 

are readily available to the system designer. Models with a large number of parameters, 

although possibly more accurate, either requires access to generally unpublished and 

proprietary manufacturer's data, or else require prototype test data. The most detailed, 

consistent information commonly available is provided in brochures from commercial 

module manufacturers. Enough information is supplied in such brochures to enable the 

designer to solve for as many as four parameters at reference test conditions, and enough 

additional information is ordinarily included to determine how these four parameters vary 

with temperature and/or solar radiation. Section 2.4 of this chapter details the type of 

information needed and how it is used to determine up to four unknown parameters.  

 

Other desirable I-V model attributes are more obvious. One is that the model 

needs to be capable of calculating current, voltage, and power relationships over the 

entire operating voltage range of the PV array (i.e., not just at the maximum power, open 

circuit voltage, and short circuit current points). Another is that the model need not be 

capable of calculating extra information not relevant for this application. For example, 

transient conditions are not considered in estimating long-term output; therefore, I-V 

models with transient calculation features are unnecessary. Finally, it is not anticipated 

that this procedure will be used for sun-concentrating systems.  
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Therefore, models with fewer parameters than are necessary for concentrating 

systems are satisfactory for describing I-V curves over ordinary sunlight intensities.  

 

2.2 Overview of I-V Models  

Table 2 lists the I-V models evaluated for possible use in the overall direct-

coupled modeling method. Acronyms and descriptive keywords used in the table are 

explained in the following text. Referring to the criteria outlined in Section 2.1, these 

models were selected because:  

 

• Each has few enough parameters so that the data required to use them can be 

obtained from widely available PV manufacturers' brochures. Some of the 

models have more than four parameters, but the additional parameters can 

have values assigned to them with good accuracy, thereby reducing the 

number of actual unknowns to four or less.  

•  Each is useful for steady state calculations only.  

• None have additional parameters or high sunlight concentration boundary 

conditions that attempt to describe concentrated-sun I-V behavior.  

• All but the simple linear model for maximum power-tracking systems (as used 

in programs such as PV f-Chart and PVFORM) are capable of describing 

complete I-V curves. The simple linear model is widely used and has 

demonstrated good agreement with experiments for maximum power-tracked 

systems [21,22]. Therefore, it is used as a measure of comparison for the other 



  20 

I-V models, but only at the predicted maximum power point. At a minimum, 

an I-V model must satisfactorily predict the maximum power point (as well as 

other points on the full I-V curve).  

 

Table 2. I-V Curve Models 

Acronym Model Description 
2M6P Lumped, 2 Mechanism model with 6 

Parameters 
2M5P Lumped, 2 Mechanism model with 5 

Parameters 
L4P Lumped, 1 Mechanism model with 4 

Parameters 
L3P Lumped, 1 Mechanism model with 3 

Parameters 
MIT Mass. Inst. of Tech. model, developed by 

TRW Corp.; a hybrid between the L4P 
and L3P models; used in TRNSYS/MIT 
and also by New Mexico Solar Energy 
Inst. 

LINEAR Simple linear model for calculating 
maximum power output only; used in PV 
f-Chart, PVFORM, and other simplified 
programs. 

 

 

2.3 PV Electrical Equivalent Circuits  

As mentioned in the introductory chapter, it is beyond the scope of this study to 

explain the complex microscopic phenomena of how charges are created separated, and 

collected in a PV circuit A macroscopic mathematical description of these phenomena is 

of interest. however. In this section, PV electrical equivalent circuits and their 

conesponding equations are shown for each of the I-V curve models listed in Table 2. 

Basic equations governing PV device behavior are explained fIrst, followed by a 
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sequence of generalized equivalent circuits. The generalized circuits are too complex to 

be used for a system design procedure, but they provide a starting point from which the 

models in Table 2 are derived after various simplifications. In the following sections of 

this chapter, dIe models in Table 2 are compared in more detail.  

 

2.3.1 Basic Equivalent Circuits and I-V Relations  

To develop an accurate equivalent circuit for a PV cell, it is necessary to 

understand the physical configuration of the elements of the cell as well as the electrical 

characteristics of each element. Figure 3 is a cross-sectional view showing major 

components of a typical PV cell.  
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Figure 3. PV Cell Schematic 

 

The junction of the dissimilar n (net negative charge) and p (net positive charge) 

layers creates a diode effect. When illuminated the layers act simultaneously as a constant 

current source in parallel with the diode. These basic PV circuit elements are depicted in 

the simple (two parameter) ideal equivalent circuit of Figure 4. An important feature of 

this circuit is that it is assumed there is a single, or lumped, mechanism by which current 

is generated from absorbed light and a single mechanism by which this current can be 

shunted across the load rather than flow through it.  
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Figure 4. Ideal PV Cell Equivalent Circuit 

 

 A nodal current balance, with assumed current directions as shown, yields the 

following expression: 

 DL III −=  (2.1) 

 I  = output current 

 V = output voltage 

 RL = load impedance (for an unspecified load type) 

 IL = light-generated current = f(irradiance, cell temperature, material, area) 

 ID = diode, or junction, current = f(V, cell temperature, and material) 

 The light current is, to a very good approximation, directly proportional to the 

intensity of absorbed solar radiation.  The light current is linearly related to cell 

temperature, and is also dependant on the materials used and fabrication processes.  For a 

given cell, the light current is conveniently expressed relative to that measured for the 

same cell at a reference irradiance, usually 1000 Watts per square meter, and a reference 

cell temperature, usually about 298 K: 
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Φ,ΦREF = irradiance at the new and reference conditions, W/m2.  

IL,REF = light current, in amps, at the reference condition.  

µISC = Manufacturer-supplied temperature coefficient of short circuit current in amps per  

degree. (As will be shown later, the short circuit current is nearly identical to the  

light current. For practical purposes, the terms are interchangeable).  

TC,TC,REF = cell temperature at the new and reference conditions.  

The diode current is calculated as:  
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IO = reverse saturation current =.f(T co material)  

q = electron charge constant, 1.602 x l0-19 C  

k = Boltzmann constant, 1.381 x l0-23 J/K  

γ = completion, or shape, factor, A (A = 1.0 for an ideal cell), multiplied by the number  

of cells wired in series, NCS (also 1 in this example). The completion factor is a  

measure of cellular imperfection and is not directly measurable.  

The reverse saturation current, in turn, is:  
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D = diode diffusion factor, approximately constant.  

εG = material bandgap energy (1.12 eV for Si, 1.35 eV for GaAs).  

The other terms are as defined above for Eqn. 2.3. For the ideal cell, the two 
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unknown parameters are IL and IO. The functional relationships for IL (Eqn. 2.2) and IO 

(Eqn. 2.4) with respect to changes in irradiance and cell temperature apply to all 

subsequent equivalent circuits, except for the MIT model. Additional simplifying 

assumptions are used in the MIT model as well as different algebraic groupings of the 

various parameters and constant terms. Consequently, different relationships are 

employed to track variations in the I-V characteristic with changes in irradiance and 

temperature. The actual equations used in the MIT model are detailed in Section 2.3.3.5.  

 

The diode current In creates the characteristic I-V curve shape of the PV cell. 

Adding the light current translates the curve upwards. Figure 5 shows both the diode I-V 

curve and the overall cell I-V curve for an ideal cell with assumed current directions as 

shown in Figure 4, power is generated only in the first quadrant. The I-V equation can be 

extended into the second or fourth quadrants. but in those regions the cell is absorbing 

energy.  
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Figure 5. Cell and Diode I-V Curves for Ideal PV Cell 

 

2.3.2 Generalized Equivalent Circuits  

In an actual cell (or module or array) other structural imperfections and inherent 

material properties introduce resistances and other inefficiencies which limit the device 

output. Also, light currents and diode currents within an actual cell are not created at 

single “1umped” elements as indicated in Figure 4. Rather, they are distributed over the 

cell volume. Likewise, current collection is distributed over the top and bottom faces. 

There are greater losses on the top surface due to oppositely charged carriers recombining 

before the desired charges can migrate to a finger on the collector grid. An optimal 

tradeoff exists between improving the current collection efficiency by increasing the 

collector grid area and increasing the absorbed radiation by reducing the grid area.  

 



  27 

2.3.2.1 Distributed Equivalent Circuit  

A generalized equivalent circuit which better approximates the distributed nature 

of the PV cell and its various loss mechanisms is shown in Figure 6. Equations for the 

individual circuit elements are of the same form as those used to describe the simple 

circuit in Figure 4, but there are more of them (for example, "n" diode current equations), 

and the voltage argument in the exponential term of each diode equation (Eqn. 2.3) is 

much more complex. Instead of using output voltage V in Eqn 2.3. the voltage argument 

for each of the n diodes is a lengthy expression which accounts for voltage drops across 

each resistance between that diode and the output terminal. In the limit as n →∞, the 

corresponding I-V expression is a differential equation.  

 

Figure 6. Distributed Equivalent Circuit 

 

The above circuit is nearly identical to that described by Wolf [23] in 1961, 

except that it has been further generalized to include a shunt resistance component often 
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found in the literature (e.g., Sze [2], Pfeiffer et aI. [4], Kreith and Kreider [24], 

Rosenblum [25]). Even without the shunt resistance t~ Wolf concluded that such a circuit 

was far too complex to evaluate, i.e., to obtain practical expressions for I and V at the 

output terminals. Furthermore, Wolf concluded that, (even in 1961 vintage cells), the 

internal resistances of "modem" cells were too small to warrant such a detailed treatment. 

An exception occurs when highly concentrated solar radiation is used, as shown by 

Pfeiffer, et al. [4].  
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2.3.2.2 Wolf's Improved Lumped Equivalent Circuit  

 

In the same article, Wolf [23] also observed that approximating the distributed 

cell by dividing the cell into many separate diode and current source mechanisms was 

unnecessary. He demonstrated excellent agreement with experimental I-V curves using 

the (somewhat) simpler seven parameter equivalent circuit shown in Figure 7. As an 

approximation to a distributed circuit, this circuit includes two pairs of similar (four total) 

lumped diodes and two lumped current source mechanisms. There are two lumped series 

resistance mechanisms. one representing the combined lumped effect of upper and lower 

contact series resistance, bulk series resistance, and a portion of the surface series 

resistance, and the other representing the remaining surface series resistance.  

 

 

 

Figure 7. Wolf's Improved Lumped Equivalent Circuit 

The I-V equation describing this circuit is:  
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The parameters for this circuit are:  

 IL = light current, distributed evenly over the two mechanisms  

IO1 = reverse saturation current (same for diodes 1 and 3)  

IO2 = reverse saturation current (same for diodes 2 and 4)  

A1 = completion factor = 1.0 (same for diodes 1 and 3)  

A2 = completion factor> 1.0 (same for diodes 2 and 4)  

RS1 = contact, bulk, and partial surface series resistance  

RS2 = remaining surface series resistance  

The other terms are as defined previously. Note that one parameter, A1, 1.0, and 

therefore diodes 1 and 3 are assumed to exhibit ideal behavior. The result of this 

assumption is that the quantities ID3 and ID4 only become large near the cell's open circuit 

voltage, where cells have been observed to exhibit near-ideal behavior [23]. A2, the 

completion factor associated with the other diode currents, is intended to model non-ideal 
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diode behavior, It is greater than 1.0 and is the dominant term at low voltages.  Although 

by definition this is a seven parameter mode, it reduces to a six parameter model when A1 

is fixed beforehand.  In practice, one would need to know I and V at six points, write 

Eqn. 2.5 six times, and solve the 6 x 6 set of simultaneous independent equations for the 

unknown parameters. 

 

2.3.2.3 Dual Lumped Parameter Equivalent Circuit 

 The two previous generalized equivalent circuits have been outlined mainly to 

show the fundamental forms from which simpler equivalent circuits may be derived. 

 

 The dual lumped parameter circuit shown in Figure 8 is a simplified version of the 

distributed circuit, Figure 6, borrowing from ideas advanced in Wolf’s lumped circuit, 

Figure 7 [23].  With seven parameters, it is also too complex to be used for this study. 

 

 However, there are two principal reasons why it is explained in more detail in the 

text which follows.  One is that the I-V models which are selected for detailed 

comparison later in this chapter are readily derived from this “parent” model; it therefore 

provides a common basis for comments when model features are compared.  The other 

reason is that, as with Wolf’s model, the actual number of parameters that need to be 

calculated can be reduced if some of them can be arbitrarily chosen with good accuracy 

beforehand and treated as known quantities.  The potential advantages of doing so will be 

more apparent upon examining the form of the resulting I-V equations.  
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Figure 8. Dual Lumped Parameter Equivalent Circuit 

 

The I-V equation describing this circuit is:  
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Substituting Eqns. 2.11 and 2.12 into 2.10 and rearranging gives: 
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The parameters for this circuit are:  

 

IL = light current  

I01 = reverse saturation current  

 I02 = reverse saturation current  

 γ1 = A1 x (NCS)  
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 γ2 = A2 x (NCS)  

 NCS = number of cells in series  

 RS = apparent lumped series resistance 

 RSH = apparent lumped shunt resistance  

 The other terms are as defined previously.  As with Wolf's lumped circuit, Al is 

set to 1.0, leaving six unknown parameters. Equation 2.13 reduces to Equation 2.1, the 

ideal two parameter lumped equivalent circuit, when I01 and RS equal zero, A2 equals 1.0, 

and RSH is infinite.  

 

2.3.3 Simplified Equivalent Circuits  

 Using the dual lumped parameter circuit as a starting point, the circuits and 

equations corresponding to the I-V models in Table 2 can be derived by making 

successive simplifications.  

 

 The first simplification made to the dual lumped parameter circuit of Figure 8 is 

common to each of the simplified equivalent circuits which follow. This simplification 

assumes the shunt resistance is infinite and therefore the shunt current is negligible.  

 

 This simplification is justified by the fact that the shunt resistance is ordinarily 

much larger than other resistances, and only affects the I-V curve shape significantly if 

the irradiance is extremely low. Even then, the effect on the curve shape is not important 

at low voltages. At higher voltages, the output current is progressively lowered due to an 

increasing shunt current, the I-V curve "shrinks," an4 the open circuit voltage is 
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decreased. Assuming infinite shunt resistance introduces little error in long-term output 

estimates since the potential electricity produced at low light levels is small.  

 

A comparison of the effect of shunt resistance on modeled I-V behavior is illustrated in 

Figures 9 and 10 for a typical module, at irradiance levels of 1030 W/m2 and 125 W/m2. 

At 1030 W/m2, the differences between the two I-V curves are barely perceptible. One 

curve assumes infinite shunt resistance while the other assumes a shunt resistance of 500 

ohms. The difference in maximum power output for these two curves is about 0.6%. For 

the lower irradiance shown in Figure 10, the differences in the two I-V curves are more 

pronounced, and the difference in maximum power output is about 4.5%. However, the 

effect of this difference is small because the irradiance, and thus the generated power, is 

low. The SOO ohm shunt resistance is much smaller than normally measured and was 

chosen to exaggerate differences in the I-V shape. A typical value for modules of this size 

is about 60 million ohms [26]. The series resistance, by comparison, is only about 0.2 

ohms.  
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Figure 9. Effect of Shunt Resistance at High Irradiance 

 

 

Figure 10. Effect of Shunt Resistance at Low Irradiance 
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 Another partial justification for assuming infinite shunt resistance is that shunt 

currents are not an inherent loss mechanism dictated by material properties, the way bulk 

series resistance is, for example. Shunt currents are principally due to current leakage 

along edges and comers of the cell, and these effects are minimized by constructing the 

module within a framework of good electrical insulators [24]. 

 

2.3.3.1 Lumped, 2 Mechanism, 6 Parameter Equivalent Circuit  

 The first I-V model evaluated for use in the long-term performance estimating 

procedure is based on the equivalent circuit shown in Figure 11. This will be referred to 

as model "2M6P." This circuit is derived from the "parent" circuit of Figure 8 by making 

one simplification. The simplification results from assuming the shunt resistance is so 

large that the current path through it is negligible, as explained in the preceding section.  

 

 

 

Figure 11. Two Mechanism, Six Parameter Equivalent Circuit 

 

 The current-voltage relationships for this circuit are as follows:  
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 Substituting Eqns. 2.15 and 2.16 into 2.14 gives:  
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 The six parameters for this circuit are:  

IL = light current  

I01 = reverse saturation current  

 I02 = reverse saturation current  

 γ1 = A1 x (NCS)  

 γ2 = A2 x (NCS)  

 RS = series resistance 

 It was asserted earlier that a maximum of four parameters can be determined from 

manufacturer-supplied information (an explanation of this limit is given in Section 2.4.3). 

In order to use this relatively complex equation, two parameters can be assigned values 

and treated as known quantities. As with Wolf's lumped circuit, A1 is set to 1.0. The 

second arbitrarily assigned parameter, ~, is set to 2.0, based on an analysis by Sah, 

Noyce, and Shockley [27] and discussed by Loferski in a 1972 National Academy of 

Sciences report [28]. The number of cells in series, NCS, is a known quantity selected by 

the designer.  
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2.3.3.2 Lumped, 2 Mechanism, 5 Parameter Equivalent Circuit  

 The "2M5P" equivalent circuit is obtained by making one additional 

simplification to the "2M6P" circuit shown in Figure 11. For the 2M5P circuit, it is 

assumed that the series resistance is negligible. With zero series resistance, the equivalent 

circuit reduces to the form shown in Figure 12.  

 

 

 

Figure 12. Two Mechanism, Five Parameter Equivalent Circuit 

 

 The current-voltage relationships for this circuit are as follows:  
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 Substituting Eqns. 2.19 and 2.20 into 2.18 gives:  
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 The five parameters for this circuit are:  

 IL = light current 

 γ2 = reverse saturation current  

 I02 = reverse saturation current  

 γ1 = A1 x (NCS)  

 γ2 = A2 x (NCS)  

 

2.3.3.3 Lumped, 1 Mechanism, 4 Parameter Equivalent Circuit  

 This circuit is obtained from the "parent" dual lumped parameter circuit shown in 

Figure 8 by making the following assumptions. First, as with the two previous simplified 

circuits, the shunt resistance is assumed to be infinite. Then, it is assumed that one 

lumped diode mechanism can be used to represent the overall diode characteristics of the 

cell. The resulting equivalent circuit, which will be referred to as the "UP" circuit, is 

shown in Figure 13.  
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Figure 13. Single Mechanism, Four Parameter Equivalent Circuit 

 

 The current-voltage relationships for this circuit are as follows:  

 DL III −=  (2.22) 
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 Substituting Eqns. 2.23 into 2.22 gives:  
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 The four parameters for this circuit are:  

 IL = light current  

 I0 = reverse saturation current  

 γ = A x (NCS)  

 RS = series resistance 

 

 For this circuit, it is not necessary to assign arbitrary values to any of the 

parameters since they can be determined from information provided by manufacturers.  



  41 

 

2.3.3.4 Lumped, 1 Mechanism, 3 Parameter Equivalent Circuit 

 If the series resistance is assumed to be zero (as was done for the 2M5P circuit) 

the UP circuit reduces to the three parameter circuit shown in Figure 14. This equivalent 

circuit is identical to the ideal circuit shown in Figure 4t except that" At" the completion 

factor, is treated as an unknown in order to describe non-ideal diode behavior (i.e., A ≠ 

1.0),  

 

 

 

Figure 14. Single Mechanism Three Parameter Equivalent Circuit 

 

 The current-voltage relationships for this circuit are as follows:  

 DL III −=  (2.25) 
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 Substituting Eqns. 2.26 into 2.25 gives:  
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 The three parameters for this circuit are:  

 IL = light current  

 I0 = reverse saturation current  

 γ = A x (NCS)  

 

 As with the UP circuit, it is not necessary to assign arbitrary values to any of the 

parameters.  

 

2.3.3.5 MIT I-V Model Equivalent Circuit  

 The MIT model equivalent circuit is a hybrid between the L3P and L4P circuits. 

Like the L3P and UP circuits, it uses a single lumped mechanism for current generation 

and also for the diode current. This model is viewed as a hybrid because the series 

resistance is neglected at an initial reference condition to obtain three unknown 

parameters, as in the L3P model, but is included when calculating new parameter values 

for I-V curves at other conditions, as in the UP model [29]. The MIT I-V equation 

requires the user to treat the series resistance as a known quantity rather than solve for it 

as one of the unknown parameters. Lastly, the MIT model requires one additional piece 

of information not explicitly needed by the previous models, µvoc. µvoc is the temperature 

coefficient of open circuit voltage (V /K) and is usually given by the module 

manufacturer.  

 

 This model is more difficult to compare side by side with the previous models 

because of a difference in the way the I-V characteristic is calculated. In each of the 
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previous simplified models, the parameters ~ and lo are recalculated at off-reference 

conditions based on the irradiance and cell temperature auxiliary relationships outlined in 

Section 2.3.1. All other parameters are assumed constant once they are solved for at a 

reference condition. The result is a new I-V equation which yields current as a function of 

voltage only.  

 

 The MIT model, although the terms in the I-V equation look different, is only an 

algebraic rearrangement of the I-V equation used for the simple three parameter model. 

In particular, the open circuit voltage, VOC' is an explicit parameter in the MIT equation, 

but not in the I-V equations for the other models. Also, the term ISC is used in place of IL, 

but as stated in Section 2.3.1, for all practical purposes these terms are interchangeable. 

Actually, for a cell model which assumes zero series resistance, the terms are equivalent. 

 

 The important difference between the MIT model and the previous I-V models is 

in the way the I-V curve is calculated at irradiances and cell temperatures differing from 

the reference condition. The series resistance is not an explicit parameter in the I-V 

equation. Rather, it is used only in an auxiliary equation to calculate variations in the 

open circuit voltage. Also, a comparison of I-V Eqns. 2.28 and 2.27 shows that the 

reverse saturation current, 100 is replaced in the MIT circuit by the product of ISC and 

constant C1. This regrouping forces the diode current to be a function of irradiance in the 

MIT circuit, which is incorrect. Diode behavior is the same under dark or illuminated 

conditions. To use the MIT equation at conditions other than the reference conditions, it 

is necessary to recalculate VOC and ISC instead of IO and IL. The MIT I-V equation, 
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related auxiliary equations, and a procedure to calculate ISC and VOC at any condition 

follow.  
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 where the constants C1 and C2 are:  
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 Constants C1 and C2 are not independent. The other new terms are supplied by the 

manufacturer:  

 VMP = Maximum power point voltage at reference conditions.  

 IMP = Maximum power point current at reference conditions.  

 A set of auxiliary translation equations is used to either recalculate the I-V 

equation at new conditions, or to translate any I-V point on one curve to a new I-V 

coordinate at new conditions.  

 III REFNEW ∆+=  (2.31) 

 VVV REFNEW ∆+=  (2.32) 

 REFCC TTT ,−=∆  (2.33) 
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 IRTV SVOC ∆−∆=∆ µ  (2.35) 

 

 µVOC = Manufacturer-supplied temperature coefficient of voltage, in units of  

  Volts/C. The other terms have been defined previously.  

 

 When recalculating the I-V equation under new conditions, the only parameters 

that need to be updated are ISC and VOC' as C1 and C2 are assumed constant. ISC is updated 

using Equations 2.31, 2.33, and 2.34. Voc is updated using the following procedure:  

 1. A new VOC is the result of a translation, or mapping, of an unknown I-V point 

on the old, or reference, I-V curve.  The I-V coordinates of this "old" point must be 

determined first. INEW is zero at the new V OC’ Eqn. 2.31 shows, by inspection, that IREF 

must equal -∆I. 

 2. ∆I is calculated using Eqn. 2.34. IREF is now known.  

 3. The V coordinate of VREF corresponding to IREF is found from the original I-V 

equation, Eqn. 2.28, evaluated at I = IREF 

 4. The translation ∆V is calculated with Eqn. 2.35.  

 5. The new VOC is found with Eqn. 2.32.  

 Once VOC and ISC are updated, the result is a new I-V equation valid at the new 

irradiance and cell temperature.  

 

2.3.3.6 Linear Maximum Power Model  
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 As stated in Section 2.2, the simple linear model is not able to describe full I-V 

curves. It is intended for calculating maximum power point output as a function of 

irradiance, cell temperature, and reference condition array data.  Less information about 

the PV system is needed to use it than any of the complete I-V curve models.  Although 

less versatile than other models, it is accurate and widely used in programs which 

estimate performance for maximum power-tracked systems [11,12,13].  For this reason, it 

is used to provide a measure of comparison to the other I-V models’ predicted maximum 

power output, along with experimental maximum power point data from Pacific Gas and 

Electric Company [30] and the New Mexico Solar Energy Institute [31]. 

 

 The equation used to calculate maximum power point output, in Watts, is: 

 ( )( )REFCCREFMAX
REF

MAX TTPP ,, 1 −−
Φ
Φ

= β  (2.36) 

 β = Manufacturer-supplied temperature coefficient of maximum power, 1/C. 

 PMAX, PMAX,REF = Maximum power output at new and reference conditions, 

  W. 

 

2.4 Solving I-V Equations 

 The previous sections in this chapter have outlined several equivalent circuits and 

their accompanying mathematical descriptions.  Several comments have been made about 

the number of unknown parameters in each I-V equation.  The following subsections 

address how to determine the parameters and create workable I-V equations by setting up 

and solving systems of simultaneous non-linear equations in several unknowns.  Some of 
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the parameters can be determined using manufacturer-supply information, while others 

may need to be specified by the user.  Once values for each parameter are calculated (or 

in some cases, chosen), the resultant I-V equation gives a continuous analytical 

expression of current as a function of voltage, at a reference irradiance and cell 

temperature. At other irradiances and cell temperatures, some of the parameters vary, and 

auxiliary equations are needed to calculate updated values at each set of conditions. The 

updated parameters yield a new I-V equation valid under the new conditions.  

 

2.4.1 Overview of Solution Methods  

 The solution methods for each of the five simplified I-V models introduced in the 

previous Sections 2.3.3.1 thru 2.3.3.5 are similar. Only one of these, the UP model, is 

examined in detail, because a side by side evaluation relative to experimental data 

(Section 2.8) showed this to be the most appropriate model to use within the long-term 

performance estimating model. Although a stepwise solution method was not shown, the 

MIT model was presented in Section 2.3.3.5 in a "solved" form; that is, each unknown 

term had already been solved for in terms of known quantities picked from 

manufacturer's data. The same is true for the LINEAR model (Section 2.3.3.6); its two 

parameters can be "solved" by inspection using data obtained from the manufacturer.  

 

 The basic approach to solving for the unknown quantities in I-V equations is to 

consider what information is normally published by PV manufacturers and how that 

information can be used to help predict I-V behavior under varying conditions. The most 

important information needed from the manufacturer are the module short circuit current, 
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open circuit voltage, and maximum power point current and voltage, all measured at the 

same reference irradiance and cell temperature. This information fixes three I-V points, 

all of which must lie on the same I-V curve and therefore, satisfy the same I-V equation.  

 

 The three data points on the I-V curve permit three independent versions of the I-

V equation to be written. The result is a non-linear system of three simultaneous 

equations, which can be solved for three unknowns. Depending on which I-V equation is 

being used, the 3 x 3 system can in some instances be solved explicitly by simple 

substitution, or in general, can be solved numerically.  

 

 For the L3P circuit, the three unknowns are the light current, IL, the reverse 

saturation current IO, and the curve-fit factor, y. For the 2M5P circuit with A1 and A2 set 

equal to 1 and 2, respectively, the three remaining unknowns are ~ and the two reverse 

saturation currents, I01 and I02. The 2M6P and UP circuits cannot be solved in this manner 

because there is a fourth unknown, the apparent series resistance, RS (i.e., the lumped 

effect of distributed series resistance loss mechanisms). Solving for the series resistance 

parameter is addressed in the following section.  

 

2.4.2 The Series Resistance Parameter  

 The series resistance term proves to be an important parameter, especially for 

irradiances and cell temperatures far from the reference condition. Given the same set of 

reference conditions, each I-V model traces I-V curves that are very similar - but only 

near the reference conditions. Away from the reference conditions, I-V models which 
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include a series resistance term describe I-V curves that are quite different than the curves 

described by models which neglect series resistance. Over a full range of operating 

conditions, such as in an annual simulation, the predicted output (for maximum power-

tracked systems) when series resistance is neglected ranges from 5 to 8% lower than if 

the "correct" series resistance is used This will be demonstrated in more detail in Section 

2.8.  

 

 In this section, five methods of determining series resistance are compared. In 

methods 1,2,4, and 5, estimating the series resistance is prerequisite to solving for the 

remaining three parameters in a 3 x 3 system of equations. Method 3 is more complex, 

because a 4 x 4 system is solved simultaneously. In decreasing order of preference, they 

are:  

 

Method 1. Use the manufacturer’s stated value. This reduces the problem to solving a 3 x 

3 system. The drawback is that PV manufacturers do not often publish this quantity.  

Method 2. Begin with an assumed value for R, to reduce the number of unknowns to 

three, and solve the resulting 3 x 3 system. Then, from the "solved" I-V equation, derive 

an analytical expression for the change in open circuit voltage with respect to temperature 

(at constant irradiance), ∂VOC/∂TC=µVOC. This analytically calculated value is compared 

to the manufacturer's estimate for µVOC, which is usually given. The process is repeated 

with new guesses for R, until the measured and derived values for µVOC match. This 

method is explained in detail in Section 2.4.5.  

Method 3. Generate a fourth independent equation and solve for the series resistance and 
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other parameters using a 4 x 4 system of equations. The fourth equation results from 

differentiating the power (I(V) x V) with respect to voltage. At the maximum power point 

this quantity must equal zero (Figure 2 in Section 1.2). The first three I-V expressions 

constrain the Iw-V pair, the short circuit, and open circuit points to lie on the same curve. 

The fourth equation constrains the ~- V w pair to also be the maximum power point on 

the curve. This method is detailed in Section 2.4.3.  

Method 4. If RS is known for one system, RS for another may be estimated by scaling RS 

for the known system up or down based on the relative magnitudes of the maximum 

power currents and voltages of the two systems. Series resistance is proportional to 

voltage and inversely proportional to current.  
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This type of approximation ignores differences in materials and fabrication and does not 

scale as well for systems which differ widely in size.  

Method 5. Some sources, including the New Mexico Solar Energy Institute [31], MIT 

[32], and NASA's Lewis Research Center [33], estimate the series resistance by 

measuring the slope of a sample I-V curve at the open circuit voltage point, and then take 

the negative reciprocal of the slope. Sample I-V curves are not always given in 

manufacturers brochures, and when they are provided, the resolution is usually too poor 

to get a good estimate of the slope. It will be shown shortly that, even when measured 

accurately, the resulting series resistance estimate will always be too high.  

 

 Both the second and third methods attempt to relate the basic I-V equation to 
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empirical quantities via an additional independent equation. In the second method, the 

additional equation is used to match the analytical and observed temperature coefficient 

of open circuit voltage. In the third method, the additional equation is used to match the 

analytical and observed maximum power point coordinates. Ideally, both of these 

methods (as well as the other methods) would yield the same result for RS, but they do 

not.  

 

 A comparison of the calculated RS values by these various methods is shown in 

Table 3. Where necessary, the UP I-V model was used as a basis for the calculations. 

These results show the second (iterative) method to produce generally more consistent 

results than the third method, which uses the maximum power point constraint.  The 

iterative method consistently predicts a value close to the alternate methods, shown in the 

last column. Each of the "slope at VOC" measurements were made by the New Mexico 

Solar Energy Institute (NMSEI) on existing arrays, and were done by "eyeballing" the 

slope from a printed version of a sample I-V curve. For all but one system, the "slope at 

VOC" method predicts a higher value than the iterative method; this one aberration may be 

due to inconsistent data or slope estimating error.  
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Table 3. Series Resistance Estimates for Nine PV Systems 

RS, ohms, solved by: # System Description 
Method 2. 
Iterating on 
µVOC 

Method 3. 
Constraining 
∂P/∂VMP=0 

Either: Method 1, given 
by mfg.; Method 4, 
scaled; or Method 5, 
estimated from sample I-
V slope at VOC 

1 Kyocera 44 W module 0.31 -0.05 0.46 – Method 4 (using 
data from system #8) 

2 Mobil 30 W module 0.74 -0.75 <1.0 – from mfg. 
3 Solarex 30 W module 0.57 -0.23 0.79 – Method 4 (using 

data from system #8) 
4 Mobil 720 W array 10.14 -6.62 4.20 – slope at VOC 
5 Arco 560 W array 3.05 -8.97 12.67 – slope at VOC 
6 Mobil 1800 W array 2.61 -0.56 2.63 – slope at VOC 
7 Trisolar 4500 W array 0.76 0.17 1.2 – slope at VOC 
8 Arco 43 W module 0.09 0.04 0.056 – given by mfg. 
9 Applied Solar 71 W 

module 
0.11 0.24 .21 – Method 4 (using 

data from system #8) 
 

 Method 3, using a maximum power point constraint, yields erratic and often 

impossible negative results. For some of the systems, the predicted value seems to have a 

reasonable magnitude but incorrect sign, and for others, the values seem consistent with 

the other methods. Two explanations for this behavior are:  

 

 1. As discussed in Sections 2.3.2 and 2.3.3, the forms of the L4P and other I-V 

equations are based on simplifying assumptions regarding the lumped vs. distributed 

nature of the circuit elements. These simplifications limit their ability to precisely model 

I-V behavior. Wolf [23] observed that models based on lumped equivalent circuits were 

less accurate near the maximum power point than at other positions on the I-V curve, 

when compared to actual curves. The simplified equations have too few parameters to be 

both exact enough and flexible enough to always force the measured maximum power 
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point to match the analytical maximum power point.  

 

 2. The equations are highly sensitive to small changes in input terms like IMP and 

VMP’ Often, published values for these quantities are rounded off (up) to too few 

significant digits to satisfy four simultaneous equations.  

 

 It was asserted in an earlier paragraph that Method 5, the slope sampling method, 

overestimates the series resistance. This may be demonstrated analytically by starting 

with the root form of the L4P I-V equation, Equation 2.24. First, this equation is 

differentiated with respect to voltage and the resulting differential equation is evaluated at 

the open circuit voltage condition, where I = 0 and V = VOC’ Solving the equation for RS 

gives:  
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 This equation shows that although the series resistance is related to the slope of 

the I-V curve at the open circuit condition, it is always smaller than the negative 

reciprocal of the I-V slope at the open circuit, by an amount equal to the second term on 

the right side of the equation. If the same equation is evaluated at higher voltages (i.e., as 

I → -∞), the second term becomes very small and the series resistance is then 

approximately equal to the slope of of the I-V curve at the higher voltage. This is 

demonstrated in Figure 15 for a large Tn-Solar Corp. array at the New Mexico Solar 

Energy Institute's (NMSEI) Southwest Regional Experiment Station. This corresponds to 

system 7 in Table 3. where the series resistance is estimated as 0.76 ohms by the iterative 
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method and 1.2 ohms by NMSEI. The curve shown was generated using the UP I-V 

model, and assumed a series resistance of 0.76 ohms. The slope of the generated curve at 

large negative currents corresponds to the correct value of RS, while the slope at the open 

circuit point yields an RS estimate equal to the NMSEI estimate, which is about 50% too 

high.  

 

 

 

Figure 15. Graphical Interpretation of Series Resistance 

 

 Both Method 3, the maximum power point constraint method, and Method 2, the 

iterative method, are explained in detail in the following sections. The maximum power 

point method is developed first because the iterative method is derived from it. The 

solution procedure used in the long-term performance model uses the iterative method to 
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find RS, but this may be overridden if a better estimate is available. Once the unknown 

parameters have been found, their values are inserted into the original I-V equation. The 

resulting I-V equation is a continuous analytical expression which gives I as an implicit 

function of V.  

 

2.4.3 4 x 4 Solution Methods for the L4P I-V Model  

 The sequence of steps required to determine the unknown parameters for the L4P 

model begins with the basic I-V equation for the L4P circuit, Eqn 2.24. The four 

unknown parameters for this circuit are IL, IO, γ, and RS. The other unknown variables in 

the original equation are I and V. Three new and independent versions of the equation are 

written by substituting measured values for I and V at three points on the curve. Any 

three points may be used. but the three commonly reported are:  

• Short circuit current. where I = ISC, V = 0  

• Open circuit voltage, where I = 0, V = VOC  

• Maximum power point, where I = IMP, V = VMP  

Each equation is set up as an objective function equal to zero, with all terms moved to 

one side of the equation.  
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 The next step is to derive a fourth independent objective function which forces the 

measured maximum power point to also be the maximum power point on the analytical 

curve. First, the power may be written as the product of I and V. and then Eqn. 2.24 is 

substituted for I:  

 VIP ×=  (2.42) 
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The power is then differentiated with respect to V and equated to zero:  
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 The first term in Eqn. 2.44, the partial derivative of I with respect to V, is 

obtained by differentiating Eqn. 2.24:  
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 This is rearranged to solve for ∂I/∂V explicitly:  
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 Then substituting Eqn 2.46 into Eqn 2.44, rearranging, and inserting VMP for V 

and IMP for I yields a fourth independent equation (Figure 2 in Section 1.2 shows this to 

be a maximum):  
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 Functions F1, F2, F3, and F4 form a system of four non-linear equations in four 

unknown variables, x1 thru x4. In the derivations which follow, IL=x1, IO=x2, γ=x3 and RS 

= x4. In the form shown, an iterative approach is required to solve the system of 

equations. Section 2.4.3.1 describes how to apply the Newton-Raphson method. 

However, an explicit solution via successive substitution is possible if the system of 

equations is simplified by omitting some minor terms. Section 2.4.3.2 details the simpler 

explicit method. Either method returns essentially the same values for the four unknown 

parameters. A sample comparison between the values returned by the two methods is 

shown in Section 2.4.3.3.  

 

2.4.3.1 Newton-Raphson Method  

Each objective function F1 thru F4 equals zero when the correct value for each of the four 

"x" variables is found. First, guesses are made for each variable. Then, a first order 

Taylor-series expansion is used to establish a new set of simultaneous equations in matrix 

form [34]. This requires computing the Jacobian matrix of the objective functions. 

Solving the new set of equations provides a better guess for each unknown, and the 

process is repeated until the difference between successive guesses lies within a desired 

tolerance. The form of the expansion for the first objective function is:  

 ( ) ( )+≈ CCCCTTTT xxxxFxxxxF ,4,3,2,11,4,3,2,11 ,,,,,,  
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where subscripts T and C refer to temporary and correct values. The form is similar for 

the other three objective functions. The new set of equations in matrix form is:  
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 (2.49) 

 

 Solving this matrix usually requires the initial guesses to be within approximately 

an order of magnitude of the correct value. Otherwise, Newton's method may provide 

divergent and unstable iterative guesses. In practice, assuming an approximate value for 

the series resistance and then solving a simpler 3 x 3 system provides good initial guesses 

to use for the above 4 x 4 system. The Jacobian terms are:  
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 where Z is: 
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 where Z is defined in Eqn. 2.64. 
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 where Z is defined in Eqn. 2.64.  

 

2.4.3.2 Simplified Explicit Method  

 The solution method outlined in the previous section, while rigorous, is fairly 

unstable when given poor initial guesses, and requires many computational steps to solve 

for the system parameters. As an alternative method, by omitting some smaller terms, the 

four objective functions (Eqns. 2.39. 2.40, 2.41, 2.47) can be simplified to the point 

where an explicit solution is possible via successive substitution.  

 

 On the right side of objective function F 2 (Eqn. 2.40), the quantity -1 is 

subtracted from an exponential quantity. The terms which make up the exponent of e are: 
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(q VOC/γkTC). Regardless of the size of the system, at the open circuit voltage point, the 

value of the exponent is about 12. Since e raised to the 12th power (1.6 x 105) is far 

greater than 1, omitting the -1 term does not significantly affect other quantities.  

 

 At the maximum power point (Eqn. 2.41), the exponential term is again much 

greater than 1 and the same simplification can be made. At the short circuit point (Eqn. 

2.39) the voltage is zero and the exponential term is only about el, so upon first 

inspection, it would be inappropriate to drop the -1 term from objective function F1.  

 

 The reason the -1 term exists in the first place is best understood by looking at a 

simple circuit (Figure 14, Eqn. 2.27) at its short circuit point. At zero voltage, no current 

flows through the diode. The "-1” must add to, and thereby cancel, the e0 term so that the 

diode current is zero. It follows by inspection that the light current IL is equivalent to the 

short circuit current ISC. 

 

 For the L4P circuit at its short circuit point, IL and ISC are not equivalent. The 

series resistance causes a small potential difference across the diode in parallel with it, so 

a small portion of the light current (about one millionth) gets shunted through the diode 

instead of through the short circuited terminals. To several significant digits, though, the 

two terms are essentially the same. By assuming that the two terms are equal, solving for 

parameter IL becomes trivial: IL = ISC’ under all conditions.  

 

 By assuming that IL = ISC’ everything else, including the "-1" term, is dropped 
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from Eqn. 2.39. In this case the -1 is not dropped because it is small relative to the 

exponential quantity added to it, but because the product of IO and the entire term in 

parentheses is small enough (approx. 10-6 x IL to neglect.  

 

 The simplified I-V equation describing the L4P circuit is:  
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And the first three objective functions are written as:  
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 The fourth objective function may be obtained in the same manner as in Section 

2.4.3, by differentiating the power with respect to voltage and equating to zero. It is 

easier, though, to first reduce the system of equations by making three substitutions. This 

simplifies the subsequent algebra.  

• Replace each IL with ISC’ using new objective function F1 (Eqn. 2.68)  

• Let Λ=q/(γkTC). This is simply a consolidation of the parameter γ  (2.71) 

 and a group of constants that is repeated often. The solved value  

 for γ will be found at the end of the calculations after solving for the  

 temporary parameter Λ.  
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• Using the new objective equation F2 (Eqn. 2.69), first solve explicitly for IO and 

then substitute for loin both I-V Eqn. 2.67 and objective function F3, Eqn. 2.70.  

 

 With these substitutions, the I-V equation becomes:  

 ( )( )[ ]SOCSC IRVVII +−×Λ−≈ exp1  (2.72) 

 And objective function F 3' the maximum power point equation, becomes:  

 ( )( )[ ]SMPOCMPSCMP RIVVIIF +−×Λ−+−≈= exp103  (2.73) 

 

 Objective functions F1 and F2 have already been used to eliminate two 

parameters, IL and IO. The next steps are to create a fourth objective function starting with 

Eqn. 2.72, and then use it and Eqn. 2.73 to solve for the remaining two parameters, RS 

and Λ. Objective function F4 is:  
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 The first term in Eqn. 2.74, the partial derivative of I with respect to V, is 

obtained by differentiating Eqn. 2.72 and then rearranging terms to give:  
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 Substituting Eqn 2.75 into Eqn 2.74, rearranging, and inserting V = VMP and I = 

IMP gives the fourth objective function:  
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 The next step is to rearrange Eqn. 2.73, solve explicitly for RS, and then substitute 

the resulting expression into F4. This leaves one equation in just one unknown, Λ. 

Canceling terms and solving for A yields (skipping several algebraic steps):  
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 With A known, the other parameters can be found by reverse substitution using 

the following equations (one parameter, IL, was found to have a trivial solution, IL = ISC):  
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 ( )OCSCO VII Λ−= exp  (2.79) 

 
CkT

q
Λ

=γ  (2.80) 

 

 Each of the four solved parameters is then used in the I-V equation (2.67) to get a 

continuous (implicit) expression relating I and V at a single condition of irradiance and 

cell temperature.  

 

2.4.3.3 Sample Comparison: Newton and Simplified Methods  

 To compare the solved values of each parameter by both the Newton-Raphson 

method and the simplified explicit method a common set of inputs is used. The module 

selected for the comparison is an ARCO M-52, nominally rated at 43 Watts at 1000 

W/m2 and a cell temperature of 25 C. Table 4 lists the inputs needed for the comparison. 
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Table 5 compares the results. The values are virtually equal for each parameter. For this 

reason, the simplified explicit method is preferred over the Newton-Raphson med1od.  

 

Table 4. Sample Inputs for Comparing Two I. V Curve Solution Methods 

Module: ARCO M-52, 43 Watt  
nameplate 

Irradiance: 1033.9 W/m2 
Cell Temperature: 33.35°C (306.5K) 
Short Circuit Current, ISC: 7.811 A 
Open Circuit Voltage, VOC: 6.808 V 
Max. Pwr. Point Current, IMP: 7.183 A 
Max. Pwr. Point Voltage, VOC: 5.389 V 

 

Table 5. Solved Parameter Values Via Two I-V Curve Solution Methods 

Parameter Value using 
Newton-Raphs 
on Method 

Value using 
Simplified 
Explicit Method

% difference 

IL 7.811 A 7.811 A 0.0 
IO 1.7851E-06 A 1.7849E-06 A -0.01 
γ 16.8563 16.8562 -0.0006 

RS 0.0413106 Ω 0.0413112 Ω 0.001 
 

2.4.4 3 x 3 Solution Method for the L4P I-V Model  

 As stated in Section 2.4.2, attempting a simultaneous solution in four unknown 

parameters sometimes yields unrealistic results. This occurs whether the Newton-

Raphson (Section 2.4.3.1) or explicit (Section 2.4.3.2) solution method is used. In this 

section, an alternate solution method is described.  This method is useful if the series 

resistance parameter is known (or approximately known), which reduces the number of 

unknowns to three. The remaining three parameters are found using a simple explicit 

equation. In the next section, a procedure is developed which iterates with improved 
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guesses for RS until a proper solution is obtained.  

 

 The solution method which follows is simpler than that used when the series 

resistance is unknown, because the added algebra associated with a fourth objective 

equation is omitted.  

 

 The solution begins with the maximum power relation given in Eqn. 2.73 from 

Section 2.4.3.2. This equation has already been reduced to a form where two of the three 

remaining unknown parameters have been eliminated. This reduction was accomplished 

by substituting Eqns. 2.68 and 2.69 into Eqn. 2.70, and by replacing q/(γ k TC) with Λ, 

according to Eqn. 2.71. Rearranging to solve for Λ gives:  
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 As with the earlier explicit solution method, the remaining parameters ~, 10, and γ 

are determined by reverse substitution using Eqns. 2.68 (trivial solution), 2.79, and 2.80.  

 

 Each parameter is used in the final I-V equation (2.67) to get a continuous 

expression which gives I implicitly as a function of V. at a single condition of irradiance 

and cell temperature.  

 

2.4.5 Iterative Method to match µVOC 

 The temperature coefficient of open circuit voltage, µVOC, is an additional piece of 
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information ordinarily reported by PV manufacturers which can be used to help estimate 

the series resistance. This coefficient is measured at the reference irradiance and is 

assumed constant. If the proper value of series resistance is chosen, and the remaining 

parameters are calculated using equations from the preceding section, the proper value of 

µVOC may be derived analytically from the solved UP I-V model. In such a case, the 

reported value of µVOC is redundant. In this section, a procedure is developed where:  

• Lower and upper limits for the series resistance are calculated.  

• An analytical estimate of µVOC is compared to the reported value for the upper and 

lower limits for RS.  

• A binomial search routine is used to converge on the proper value of µVOC by 

making new guesses for RS.  

 

 The lower limit for RS must be zero ohms. The corresponding value for A is 

calculated using Eqn. 2.78 with RS = 0, and then IO is found using Eqn. 2.79. γ is 

calculated using Eqn. 2.80, and the last parameter, IL, is set equal to ISC. With the 

calculated parameter values inserted, I-V Eqn. 2.67 is capable of describing a complete I-

V curve.  

 

 An upper limit for RS can be derived based on a practical physical limit imposed 

by another cell parameter, γ. When a value for RS is arbitrarily selected, the remaining 

parameters are fixed, according to the relationships developed in the previous section. 

The resulting I-V equation describes a line which must pass through the short circuit, 

open circuit, and maximum power points. A limited range of series resistances may be 
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selected which will describe differently shaped I-V curves, but each obeys the same three 

point constraint. Progressively higher values of RS result in progressively lower values of 

γ.  γ is the product of the completion factor, A, and the number of cells in series within 

the system, NCS. The completion factor has a lower limit of 1.0, which corresponds to a 

condition in which each photon-generated charge pair contributes perfectly to the cell 

current rather than recombining. Therefore, γ has a lower limit equal to the number of 

cells in series, a known quantity for each system.  

 

 Substituting γ = NCS into Eqn. 2.80 and then inserting the resultant value for A 

into Eqn. 2.78 yields the following upper limit for RS = RS,MAX:  
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 IL which is set equal to ISC, is not affected by the value of γ. but IO is.  IO is 

recalculated according to Eqn. 2.79, and then each calculated parameter is used in I-V 

Eqn. 2.67, as with the zero resistance case.  

 

 At the open circuit voltage point, Eqn. 2.67 may be rewritten to solve explicitly 

VOC:  
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 Differentiating this expression with respect to cell temperature, at constant 
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irradiance, results in the following expression, which is set equal to the manufacturers’ 

stated value for µVOC: 
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 At the proper value of RS. the empirical and analytical quantities are equal. A 

binomial search routine was used in the long-term performance model to converge on  

the proper value for R, between the established upper and lower bounds. The final value 

for RS fixes the value of the other parameters in I-V Eqn. 2.67 at the reference conditions.  

 

 The results of this solution method for nine systems were shown earlier in Table 3 

of Section 2.4.2. This solution method seems more consistent than the maximum power 

point constraint method, and this is likely due to the fact that the L4P I-V equation is a 

better predictor of I-V behavior near the open circuit point than at the maximum power 

point. Like the maximum power point method. this method is also sensitive to the 

precision of the input data; therefore, round off error may lead to inaccurate solutions.  

 

2.4.6 Information required to use the L4P I-V Model  

 Table 6 is a complete list of the information needed to use the UP I-V curve 

model for all irradiance levels and temperatures. Each item is ordinarily obtained from a 

PV manufacturer's module brochure, except for the apparent series resistance, which is 

often missing, and the semiconductor bandgap energy, which is published in many texts. 

The last three items are used to calculate cell temperature from a known ambient 
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temperature and irradiance. The procedure for doing so is explained in detail in Section 

2.6.  
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Table 6. Information required to use the L4P I. V Model 

Symbol Units Name From 
mfg? 

ΦREF W/m2 plane of array irradiance, reference Yes 
Φ W/m2 plane of array irradiance No 

TC,REF K cell temperature, reference Yes 
TC K cell temperature No 

ISC,REF A short circuit current, reference Yes 
VOC,REF V open circuit voltage. reference Yes 
IMP,REF A maximum power point current reference Yes 
VMP,REF V maximum power point voltage, reference Yes 

NCS 1/system number of cells in series within the system Yes 
µISC A/K temperature coefficient of shan circuit 

current 
Yes 

µVOC V/K temperature coefficient of open circuit 
voltage 

Yes 

εG V bandgap energy - semiconductor material 
property, assumed constant over flat plate 
PV operating temperatures; published in 

many texts 

No 

RS Ω apparent (lumped) series resistance - if not 
pro- vided by manufacturer, can be 

estimated by other methods  
(Section 2.4.2) 

Some 

Area m2 net module area Yes 
TA,NOCT K ambient temperature at Nominal 

Operating Cell Temperature (NOCT) test 
conditions 

Yes 

ΦNOCT W/m2 plane of array irradiance at NOCT 
conditions 

Yes 

TC,NOCT K cell temperature at NOCT conditions Yes 
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2.5 Effects of Irradiance and Temperature on I-V Characteristics  

 Much of the computational effort needed to describe I-V behavior is associated 

with initially solving for the unknown parameters at a reference irradiance and cell 

temperature. Although a new I-V curve is needed when either the irradiance or 

temperature changes, fewer computations are needed to update parameter values once the 

reference values are established. This is because auxiliary relationships are used to track 

the changes in parameters from their reference values, rather than solve an entire system 

of equations at each new set of conditions. Solving a new system of equations at each 

new set of conditions is ordinarily not possible, because the three I-V curve points (inputs 

ISC, VOC, and IMP-VMP) are only known at one condition.  

 

 Of the four parameters in the L4P model, IL is assumed to vary with irradiance 

and temperature according to Eqn. 2.2. IO is assumed to vary only with temperature 

according to Eqn. 2.4, and RS and γ are assumed constant, at least over the expected 

range of temperatures and irradiances for flat plate PV modules. Figure 16 illustrates the 

dependence of I-V characteristics on temperature and irradiance for a sample module. 

The trends evident in this plot are similar for other PVs, namely, the strong effect of 

irradiance on short circuit current and of temperature on open circuit voltage, and the 

weaker effect of irradiance on open circuit voltage and of temperature on short circuit 

current.  
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Figure 16. Effect of Irradiance, Temperature on I-V Curve Shape 

 

2.6 Determining Cell Temperature  

 The temperature within an illuminated PV cell is related to the ambient 

temperature, and also to the rates at which incident energy is being absorbed, dissipated, 

and converted to electricity. A steady state energy balance determines the average cell 

temperature increase above ambient. Because the cells are thin and have a small heat 

capacity, temperature gradients across the cell are neglected in the following analysis. 

Under normal operating conditions (i.e., no shaded or failed cells), the average 

temperature of each cell within a module or an array is approximately the same.  

 D.C. POWER = ABSORBED POWER – DISSIPATED POWER (2.85) 

 where each te1'ID may be funher broken down as:  
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 D.C. POWER = η××Φ Area  (2.86) 

 η is the dimensionless D.C. electric conversion efficiency. It ranges  

 from zero at the short circuit and open circuit points to a typical  

 maximum of about 10 -14% at the maximum power point.  

 ABSORBED POWER = ( )τα××Φ Area  (2.87) 

 ( )τα  is the dimensionless transmittance-absorptance product, or the  

 ratio of absorbed to incident energy  

 DISSIPATED POWER = ( )AMBCL TTAreaU −××  (2.88) 

 UL is an overall (convective and radiative) loss coefficient, with units  

 of W/m2•K. For simplicity, the loss coefficient is assumed to be  

 constant, which neglects the effect that factors such as windspeed,  

 humidity, and temperature may have on it. Although these factors  

 may substantially affect the loss coefficient, their effect on the  

 resulting absolute (Kelvin) cell temperature is small.  

 

 Substituting Eqns. 2.86 - 2.88 into 2.85 and then rearranging to solve for TC gives:  
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 The transmittance-absorptance product is assumed constant at 0.9, with no 

correction for dependence on incidence angle. Another simplifying assumption is to 

assign a constant value for 11- Even though 11 varies from 0 to about 14%, depending on 

the applied load and the weather conditions, selecting a constant value does not 
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significantly affect the cell temperature calculation. This is due to the fact that, of the 

terms in parentheses, ( ) 1/ <<ταη . At a typical average irradiance of about 600 W/m2, the 

difference in calculated cell temperature between 5% and 14% efficiency (starting at 0%, 

the comparison is meaningless, since the power output is zero) is less than 2 °C. This is 

about the same uncertainty inherent in cell temperature measurements, and amounts to 

less than a 1 % difference in power output near the maximum power point.  

 

 The value of η chosen for Eqn. 2.89 is the maximum power point efficiency at the 

given reference conditions. ηREF. and is calculated from:  
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 To find the loss coefficient UL, three pieces of information from a standard test 

procedure called the Nominal Operating Cell Temperature (NOCT) test are needed.  This 

information is given by the module manufacturer, and is listed in Table 6. The NOCT test 

measures the steady state cell temperature when the system is open-circuited (efficiency 

= 0.0) at a standard set of conditions; usually, at an ambient temperature of 20°C, a plane 

of array irradiance of either 800 or 1000 W/m2, and a wind speed of 1 m/s, not 

predominantly parallel to the array. The resulting cell temperature is ordinarily 40 - 50°C. 

At the NOCT test conditions. Eqn. 2.89 is rewritten to solve for UL:  
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 UL is substituted back into Eqn. 2.89 and used for each hourly calculation of cell 

temperature.  

 

2.7 Effect of Series/Parallel Groupings on I-V Characteristics  

 Sections 2.4.3 thru 2.4.5 detailed methods by which the various unknown 

parameters may be determined for the UP I-V model. The input data is ordinarily based 

on a single module's measured I-V characteristics at some reference condition. For an 

array of two or more modules, the parameters need to be scaled up to describe array-level 

I-V characteristics. The scaling depends on the number of series (NS) and parallel (NP) 

strings of modules making up the array. The scaling relationships for the L4P I-V model 

parameters are:  

Array Value = Module Value x Scaling Term 

Parameter Scaling Term 

IL NP 

IO NP 

γ NS 

RS NS/NP 

 

 These relationships assume that all modules in the array are alike. For a real array, 

the overall value of any of the four parameters will differ from the scaled values because 

all modules are not identical. This type of mismatch penalizes output and cannot be 

eliminated. but can be minimized by testing each module's output under uniform 

conditions prior to array assembly and then accepting only those modules whose output 

falls within normal tolerances. Typical array mismatch losses may range from 1-5% 

[12,35]. For production tolerances of ± 5-10%, mismatch losses are not significant [36]. 
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Throughout this study, each module within an array is assumed to be identical. This 

assumption yields upper performance limits of the array.  

 

 Figure 17 shows how the I-V curve shape for a single module changes when 

additional modules are wired in series and parallel groupings.  

 

 

 

Figure 17. Effect of Series/Parallel Arrangement on I -V Curve Shape 

 

2.8 I-V Models Compared to Measured Data  

 The five I-V curve models outlined in Section 2.3.3 differ in their ability to 

predict the I-V curve characteristics of actual PV systems. In this section, the I-V models 

are evaluated two ways. The first is a comparison of I-V and Power- V curves generated 
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by each model, relative to measured I-V points at the same irradiance and cell 

temperature. Curves for two module types are examined. The second way is a statistical 

comparison of the predicted maximum power point output for three systems, relative to 

data measured under a range of operating conditions.  

 

2.8.1 I- V Curves  

 To allow a consistent set of comparisons for a given module, the same reference 

condition is selected for each I-V model. For the three I-V models which include series 

resistance as a fourth unknown parameter (L4P, MIT, 2M6P), the same value of RS, is 

used in each.  

 

 At the reference condition, differences between the I-V models are minor. This is 

because each is forced to trace a smooth curve through the same three points (short 

circuit, open circuit. and maximum power points). Differences between models become 

more apparent under conditions farther away from the reference condition. The following 

plots use variations in irradiance and temperature to illustrate differences between 

models.  

 

 Figures 18a, 18b, and 18c are I-V plots for an Applied Solar Corp. module with a 

nominal peak rating of 75 W at about 16 volts. Each of the five I-V models are compared 

to actual points measured by the Pacific Gas and Electric Co. [30]. The irradiance (1030 

W/m2) and cell temperature (36 °C) shown are also selected to be the reference condition. 

For clarity, three plots are presented, because some of the I-V curves would otherwise be 
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indistinguishable. The UP (on both Figs. 18a,c) and 2M6P (Fig. 18b) models are nearly 

identical and match well with the measured points. Both of these models, as well as the 

MIT model, assume R, = 0.21 ohms. At the reference condition, however, the series 

resistance term does not affect the MIT model (as explained in Section 2.3.3.5). The 

MIT, L3P. and 2M5P (R. = 0) curves are similar and do not follow the measured points 

as closely.  

 

 

Figure 18a. I-V Curve Comparison for lAP and MlT Models 
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Figure 18b. I-V Curve Comparison for 2M5P and 2M6P Models  
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Figure 18c. I-V Curve Comparison for L3P and UP Models 

 

 

 To show how differences in I-V curve shape affect the predicted power output, 

the information from an I-V curve can be plotted instead on a power vs. voltage scale. 

Figure 19 is a rescaled Power-V plot of Figure 18a. Power-V plots for the other I-V 

models are not shown, but are similar. Table 7 lists the root mean square (RMS) % 

difference, averaged over the full Power- V curve, between the power (I x V) at 15 
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measured points versus that predicted by each model. The RMS % difference is 

calculated as:  
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Figure 19. Power- V Curve Comparison for UP and MIT Models 
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Table 7. RMS % Power Differences, Applied Solar module 

Irrad. = 1030 W/m2, Cell Temp. = 36°C 

I-V Model RMS % Power 
Difference over full 

Power- V curve 
L3P 0.7 

L4P 0.2 

2M5P 0.9 

2M6P 0.2 

MIT 0.7 

 

 The effect of irradiance on predicted I-V curves is shown in Figures 20a and 20b. 

The reference irradiance and cell temperature are the same as in the previous figures, but 

the test irradiance is reduced to 338 W/m2, about 1/3 that of the previous curves. 

Measured values for the short circuit, open circuit, and maximum power points are 

shown. At the lower irradiance, differences between the models are more apparent. 

Models which account for series resistance translate more accurately to the lower 

irradiance condition than those which do not account for series resistance.  
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Figure 20a. I-V Curves for L3P, L4P, and MIT Models at Low Irradiance; Applied Solar 

module 
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Figure 20b. I-V Curves for 2M5P and 2M6P Models at Low Irradiance; Applied Solar 

module 
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 Figures 21a and 21b show the Power-V characteristics for the five models at the 

lower irradiance. The difference between the measured maximum power and predicted 

maximum power is about 1 % for the MIT model, 2% for the UP and 2M6P models, and 

5% for the L3P and 2M5P models.  

 

 

 

Figure 21a. Power- V Curves for the L3P, L4P, and MIT Models at Low Irradiance 
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Figure 21b. Power-V Curves for 2M5P and 2M6P Models at Low Irradiance 

 

 The effect of changing irradiance on the various I-V models is also shown for 

another PGandE test module, an ARCO M-52, nominally rated at 43 W and 6 volts. For 

this module, the reference irradiance is 1034 W/m2 and the reference cell temperature is 

34 °C. Figures 22a and 22b compare the five I-V models to measured points at a test 

condition of 1027 W/m2 and 43 °C. Figures 23a and 23b show the same results plotted on 

a Power- V scale. Table 8 lists the RMS % difference, over the full Power- V curve, 
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between the power (I x V) at 19 measured points versus that predicted by each model.  

 

 

Figure 22a. ARCO I-V Curves compared for L3P, UP, and MIT Models 
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Figure 22b. ARCO I-V Curves compared for 2M5P and 2M6P Models 
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Figure 23a. ARCO Power- V Curves compared for L3P, lAP, and ~ Models 
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Figure 23b. ARCO Power- V Curves compared for 2M5P and 2M6P Models 
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Table 8. RMS % Power Differences, ARCO module 
Irrad. = 1027 W/m2, Cell Temp. = 43 °C 
I-V Model RMS % Power 

Difference over full 
Power-V Curve 

L3P 0.4 
L4P 0.2 

2M5P 0.4 
2M6P 0.1 
MIT 0.2 

 
 

 As with the Applied Solar Corp. module, the I-V models differ more at irradiance 

levels farther from the reference condition. Figures 24a and 24b show the translated I-V 

curves for the five models at a test condition of 510 W/m2 and 43 °C. Measured values 

for the short circuit, open circuit, and maximum power points are shown. Figures 25a and 

25b show the curves on a Power- V scale. The difference between the reported maximum 

power and predicted maximum power is about 5% for the L4P and MIT models, 6% for 

the 2M6P model, and 11 % for the L3P and 2M5P models. Each model underestimates 

the output, but the trend among models is consistent with the Applied Solar module 

results. For this module, the uniformly poor translations among each I-V model may be 

due to an inaccurate irradiance measurement at this test condition.  
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Figure 24a. ARCO I-V Curves for L3P. UP. and MIT Models at Low Irradiance 
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Figure 24b. ARCO I-V Curves for 2M5P and 2M6P Models at Low Irradiance 
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Figure 25a. ARCO Power- V Curves for L3P. lAP. and MIT Models at Low Irradiance 
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Figure 25b. ARCO Power- V Curves for 2M5P and 2M6P Models at Low Irradiance 

 

 The effect of varying cell temperature has a similar effect on I-V curves generated 

by each model, except for the MIT model. This is demonstrated in Figure 26, using the 

ARCO module. The irradiance is at the reference level, 1034 W/m2. For this example, the 

cell temperature is 70 °C, and the reference cell temperature is 34 °C. At the reference 

condition, the I-V curves generated by all of the models are very similar, but at the higher 

cell temperature, the MIT model shows a clearly different response. The MIT model 
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predicts a maximum power that is 6 to 7% greater than that predicted by any of the other 

models. No actual test data were available at this condition.  

 

 

 

Figure 26. I-V Curves at High Cell Temperature 
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 To check which model(s) translate I-V curves more accurately under varying cell 

temperatures, each was compared at several conditions where actual test data were 

available, that is, at constant irradiance but different cell temperatures. An example is 

shown in Figures 27a-d for the ARCO module, where the UP model is compared to one 

of the other models in each figure. The irradiance is about 910 W/m2 at both cell 

temperatures of 42 °C and 58 °C. Part of the between-model variation seen is these 

figures is caused by a 10% decrease in irradiance from the reference level. The 

conclusion from Figure 26 and Figures 27a-d is that the MIT model does not translate as 

accurately as the other models for changes in cell temperature alone.  
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Figure 27a. I-V Curves for L4P and MIT Models at Two Temperatures 
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Figure 27b. I-V Curves for L4P and 2M6P Models at Two Temperatures 
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Figure 27c. I-V Curves for L4P and L3P Models at Two Temperatures 
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Figure 27d I-V Curves for lAP and 2M5P Models at Two Temperatures 

 

 Some conclusions from examining the I-V and Power-V curves for the five I-V 

models are that:  

• Each model generates very similar I-V curves at the same reference condition.  

• I-V Models which include a series resistance parameter (MIT, L4P, and 2M6P) 

are better predictors of I-V characteristics at irradiance levels away from the 
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reference level than the I-V models which ignore series resistance (L3P and 

2M5P).  

• The MIT model does not translate I-V curves as well as the other models for cell 

temperatures away from the reference cell temperature.  

• Overall, I-V curves generated by the L4P and 2M6P models are the accurate and 

are practically indistinguishable from one another.  

 

 A related conclusion is that the increased accuracy demonstrated by the L4P and 

2M6P models is obtained at the expense of added computational complexity. For the 

L3P, 2M5P, and MIT models, the Current may be calculated directly as a function of 

voltage. For both the L4P and 2M6P models, the current is an implicit function of 

voltage, so additional steps are necessary to converge on a proper I-V pair. The 2M6P 

model I-V equation (Eqn. 2.17) is algebraically more complex than the L4P model (Eqns. 

2.24 or 2.67) because it contains an additional diode current term.  

 

2.8.2 Maximum Power Point Evaluation  

 A well-designed direct-coupled PV system matches the PV array and its load so 

that the time-varying operating point is as close as possible to the time-varying maximum 

power point, especially during peak solar radiation periods. At a minimum, an I-V model 

must be able to reliably predict the I-V coordinates of the maximum power point over the 

system's expected range of irradiances and cell temperatures. However, the region of the 

I-V curve near the maximum power point at off-reference conditions is generally where 

all simplified I-V models are the least accurate. Therefore, comparing predicted 
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maximum power versus measured maximum power over a wide range of operating 

conditions provides a stringent test of an I-V model's accuracy.  

 

 In this section, a wide range of measured maximum power point data for three 

systems are compared to predicted maximum power output for six models. Five of these 

are the I-V curve models compared in the previous section and the sixth is the linear 

maximum power-only model discussed in Section 2.3.3.6. The linear model is included 

for comparison because it widely used among the performance models listed in Chapter 1 

and has demonstrated good accuracy in validation tests on existing systems [21].  

 

 One of the three systems evaluated in this section is a large 4500 W array of Tri-

Solar Corp. modules located at the Southwest Regional Experiment Station (SWRES) in 

Las Cruces, New Mexico. The other two are the 75 W Applied Solar and 43 W ARCO 

modules located at the Pacific Gas and Electric Co.'s San Ramon, California test site. 35 

observations are included in the comparison for the Tri-Solar array, 98 for the Applied 

Solar module, and 86 for the ARCO module. The test conditions for these observations 

range from 79 to 1125 W/m2 irradiance and from 18 to 65 °C cell temperature.  

 

 For each module, the percentage difference between the measured and predicted 

maximum power at each test condition (observation) is computed. This computation is 

done for each of the six models. The results for each system are shown in Figures 28 - 30 

as a frequency distribution. The distribution is based on groups of observations whose 
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percentage error falls within bins of 5% width. A perfect model would demonstrate a 

single tall spike, centered at 0% error.  

 

 

 

Figure 28. ARCO module: % Maximum Power Point Difference Compared for 6 Models 
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Figure 29. Applied Solar module: % Maximum Power Point Difference Compared for 6 

Models 
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Figure 30. Tri-Solar Array: % Maximum Power Point Difference Compared for 6 Models 

 

 Several trends are evident in these figures. The frequency distribution for the 

linear model is narrower, more peaked, and centered closer to zero than for the other 

models. Approximately 75% of all observations for these models fall within ± 5% of the 

measured maximum power, and about 90% of the observations predict the maximum 

power within ± 10%. The L4P and 2M6P models are slightly less accurate than the linear 

model, followed by the MIT model. The distribution shapes for the L3P and 2M5P 
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models are shorter and wider than for the other models, but about 90% of the 

observations for these models still fall within ± 15% of the measured maximum power.  

 

 There are a small number of observations for the ARCO and Applied Solar 

modules that have a large percentage difference between the predicted and measured 

maximum power. Each of these observations were made at a reported irradiance of less 

than 125 W/m2, typical of very early or very late observations at high incidence angles. 

Pyranometer accuracy is poor at high incidence angles and is a likely cause of error. Even 

if the reported irradiances were correct, large model differences at low irradiances are of 

lesser importance because the potential electric output under such conditions is small. All 

of the observations for the Tri-Solar array were made at irradiances of at least 316 W/m2 

and all of the predicted values are within - 20 to + 15% of the measured maximum power.  

 

 The differences between measured and predicted values for all of the models are 

centered close to zero for the ARCO module and close to + 5% for the other systems. A 

possible reason why the results would be centered greater than zero is that the reported 

irradiance values are not modified to account for incidence angle effects. If the 

observations were distributed evenly over each day, an average incidence angle modifier 

would decrease the estimated output by about 5%. The ARCO results do not show the 

same skewed behavior, but this may actually be a compensating error caused by an 

inaccurate (overstated) reference condition.  
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 Table 9 lists the % RMS difference and % mean bias difference averaged over all 

observations for each system. Equation 2.92 is used to compute the RMS statistic and the 

% mean bias difference is calculated with Eqn. 2.93:  

 

 MEAN BIAS % DIFF. = ( )∑ ×−
.,

.,., .
100

MEASMAX
MEASMAXPREDMAX PAVG

PP  (2.93) 

 

Table 9. Statistical % Diff., Predicted vs. Measured Maximum Power for 6 Models  

ARCO Tri-Solar Applied Solar System-> 

Model % Mean 

Bias Diff. 

% RMS 

Diff. 

% Mean 

Bias Diff. 

% RMS 

Diff. 

% Mean 

Bias Diff. 

% RMS 

Diff. 

L3P -4.4 5.8 -0.4 6.4 -0.2 3.9 

L4P -1.4 3.1 2.3 5.8 2.2 3.7 

2M5P -4.6 6.0 -0.5 6.5 -0.3 4.2 

2M6P -1.9 3.5 1.9 5.7 2.1 3.7 

MIT -1.7 3.4 1.7 5.9 1.9 3.9 

Linear .1 2.6 2.6 5.9 2.0 3.4 

 

 These statistics confirm the general observations made from Figures 28 - 30. 

Averaged over all three systems, the UP model has the lowest % RMS difference of the 

five I-V models, 4.2%. The 2M6P and MIT models are slightly higher at 4.3% and 4.4%, 

respectively. The average % RMS difference for the Linear model is the lowest of all 

models, at 4.0%.  

 

 The % mean bias differences alone are misleading because a more erratic model 

may average out to a low mean bias difference, as is evident from Figures 28 - 30. 
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Therefore, the low bias differences for some systems for the L3P and 2M5P models are 

not good indicators of the model's accuracy. Averaged over all three systems, the mean 

bias differences are about 1 % for each of the L4P, 2M6P, MIT, and Linear models, so 

this statistic does not show any relative advantage among these models.  

 

 The overall conclusion from the maximum power point evaluation is that the L4P 

I-V model provides the best match with experimental data and also with an established 

theoretical model (Linear model). The average difference between the predicted and 

measured power is within the same ± 5% range of uncertainty typical of the irradiance 

measurements themselves. The L4P I-V model is a key element of the long-term direct-

coupled performance model described in the following chapters.  

 

 The 2M6P model is nearly as accurate as the L4P model, but is computationally 

more complex. The MIT model is slightly less accurate than the L4P and 2M6P models 

and is computationally simpler, but as demonstrated in the previous section, is less 

accurate at cell temperatures far from the reference condition. For this evaluation, test 

data were available to select a reference cell temperature close to the normal operating 

temperature. Ordinarily, the designer is only provided test data at standard test 

conditions, in which case the reference cell temperature would be about 20 °C lower than 

normal operating cell temperatures.  
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2.9 Summary  

 In this chapter, fundamental PV electrical characteristics and equivalent circuits 

were described. Mathematical models of varying complexity were discussed, as well as 

criteria for selecting an appropriately detailed model. Solution methods for determining 

unknown parameters in current-voltage equations were developed, and the influence of 

variables such as irradiance, cell temperature, and electrical configuration were 

addressed. Finally, five I-V models were evaluated for use in an overall method to 

estimate the long-term performance of direct-coupled PV systems. The lumped, four 

parameter (or L4P) model was selected because it provided the best match with 

experimental data.  

 


