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Abstract 

 

This thesis introduces a new method to estimate the long-term performance of 

direct-coupled and maximum power-tracked photovoltaic (PV) systems without battery 

storage. A number of models exist for estimating maximum power-tracked system 

performance, but the maximum power-tracking feature is included here as a benchmark 

for comparison to direct-coupled system performance, the true object of this research. 

While the output from either type of PV system is dependent on weather and PV array 

characteristics, the output from direct-coupled PV systems is dependent on the applied 

load as well. As a result, estimating the performance of direct-coupled systems is more 

complex than for maximum power-tracked systems.  

 

The method developed here is computationally simple. A reduced set of hourly 

weather data is generated from widely available long-term monthly-average global solar 

and ambient temperature data. Correlations are used to estimate hourly weather variations 

within a day and daily variations within a month. A small number of "typical day" groups 

are used to approximate the long-term distribution of daily weather in each month. The 

"typical days" within each group are assumed to be identical which reduces the number 

of computations yet, subject to the accuracy of the correlations, retains the accuracy of 

long-term simulations.  

 

To assess the validity of the new method, a program titled DCPVSIMP (for 

Direct-Coupled PV model, simplified version) was written. Five potential I-V curve sub-
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models for this program were evaluated; the one which was selected corresponded well 

with a large sampling of experimental I-V curve data from outside sources, and the 

information required to use it is commonly available from PV manufacturers. A detailed 

version of this program, identical in all respects except that it uses hourly TMY data, 

titled DCPVDET, was also written to provide a basis for evaluating the weather 

generation component. 

 

Both the DCPVSIMP and DCPVDET versions were compared to two established 

models for maximum power-tracking systems, PVFORM and PV f-Chart. Monthly and 

annual estimates were within :t 1 % relative to PVFORM and + 5 to 6% relative to PV f-

Chart. PV f-Chart includes a variable correction factor which decreases estimates of the 

absorbed radiation at off-normal incidence angles. For performance estimates at moderate 

northern latitudes the overall effect of this term is about a 5% decrease in annual output 

The difference between the DCPVDET model and a "5 typical day" version of the 

DCPVSIMP model was found to be less than 1 % for maximum power-tracking systems.  

 

Monthly and annual performance for over 800 cases using the DCPVDET model, 

based on three locations and a large variety of direct-coupled resistive, fixed voltage, and 

DC motor loads, was compared to 3, 5, 10, and 20 "typical day" versions of the 

DCPVSIMP model. The overall annual % root mean square (RMS) difference between 

the two models ranged from 3.8% for the "3 typical day" version to 3.2% for the "20 

typical day" version, with most of the reduction in the % RMS difference occurring 

between the 3 and 5 "typical day" versions (3.4% RMS for the 5 day version). For all 
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versions the % mean bias difference (MBD) was less than 1%. The worst monthly results 

ranged between 5 to 6% RMS among the four versions tested, with a % MBD of less than 

1 %.  

 

The body of the report includes a derivation of the new direct-coupled 

performance estimating method and a description of the DCPVSIMP and DCPVDET 

models, statistical evaluations of the models and their components, and a set of graphs 

illustrating typical applications of the DCPVSIMP model for direct-coupled system 

design.  
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