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Abstract

This thesis presents the application of optimization techniques to a model of an HVAC

system. Braun (1989) found that the power consumption of an HVAC system can be

adequately described by a single quadratic curve. Optimal control settings can be found by

minimizing power with respect to controlled variables,

The HVAC model used for this project was based on data gathered from an HVAC test

facility at the Joint Center for Energy Management. The system was run at a wide variety of

operating conditions, and the data were used to create pefformance curves for the power

consumption of system components. The system model is comprised of several

component models, which include the chiller, cooling coil, condenser fans, supply and

return fans, and the chilled water pumps. These component models were linked together to

form a system model that took six operating variables as input. The uncontrolled variables

that were used as inputs are cooling load, sensible heat ratio, and outside air temperature.

There are two continuous controlled variables, chilled water temperature and supply air

temperature; and one discrete controlled variable, the number of operating condenser fans.

The model was run at many operating conditions. The results were curve fit to create a

system optimization curve. Three curves were created, one for each discrete variable

setting. By differentiating the curves with respect to controlled variables, the system power

was minimized and optimal control settings were found.
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The optimization curves do not accurately reflect all the system characteristics. For every

load and sensible heat ratio, there exists a minimum allowable temperature difference

between the chilled water temperature and the supply air temperature. For some operating

conditions, the optimization curve recommended values that violated this constraint. By

testing the model, data on the constraint were gathered. The constraint was described using

a simple linear equation and was included in the optimization methodology.

Two simulations were performed using actual weather data to assess the energy and power

savings that result from using optimal control. One simulation was performed with fixed

control variable settings. The second run used optimization techniques. The model was

run with weather data at a variety of operating conditions to generate initial operating data.

The data were used to build an optimization curve, and the system was run using variable

settings that minimized total system power. As more operating data were generated, the

curve was updated. A comparison of the two runs showed that the optimal control

methodology produced significant peak power reduction in this model, but produced

minimal energy savings.
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Chapter 1

Introduction

1.1 Background and Objectives

The heating, ventilation and air conditioning (HVAC) system consumes a large percentage

of the energy used by most commercial buildings. The central plant equipment can be

operated at various control variable settings; often there are many different ways to run a

system to provide the necessary amount of heating and cooling. Improved control of

HVAC systems can reduce their energy consumption, thus saving both energy and money.

With rising energy costs, it is increasingly important to examine HVAC energy

consumption and how it may be reduced.

Braun (1989) outlines methods of modelling HVAC systems in order to obtain optimal

control strategies. He modelled a large cooling system at the Dallas-Fort Worth Airport,

and developed optimal control strategies for that system. He details methods of modelling

individual components, as well as an overall system model. His method, which is the one

used for this research, involves creating a single, overall quadratic equation of the system

power as a whole, and minimizing it with respect to controlled variables. The result is a set

of equations that produce an optimal control strategy for a given set of operating

conditions. He found that performance curves are flat near the system optimum. Thus, an
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approximate model of the system, such as the quadratic curves of system power, is

sufficient to determine near optimal control strategies.

This thesis examines the control of a cooling system and the development of optimal

control strategies to reduce total cooling system energy consumption. The specific HVAC

plant used in this research is described in Section 1.2. Chapter 2 details the methods used

to model the various components, the controls, and the system as a whole. Optimization

procedures are described in Chapter 3, with discussion of curve fit generation and

verification. Implementation of optimization methods into an HVAC system is detailed in

Chapter 4. Finally, conclusions and recommendations based on this work can be found in

Chapter 5.

1.2 Laboratory Equipment Description

The system analyzed in this study is located at the Joint Center for Energy Management

(JCEM) in Boulder, Colorado. It is a test facility, designed to allow dynamic testing of

HVAC equipment. It includes a full-sized HVAC system, four simulated zones where

cooling or heating loads can be imposed on the system, and a complete direct digital control

and data acquisition system. The facility was designed to simulate one floor, or 10,000 to

15,000 square feet, of a commercial office building. A simple schematic of the system is

shown in Figure 1.1. The system does not contain some of the characteristics of a real

building; however, the optimization techniques investigated with the JCEM system are
applicable to real buildings.
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Figure 1.1: Schematic of HVAC Test Equipment at JCEM
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The schematic shows the complete air loop, as well as outside air exhaust and intake. The

chilled water loop to the air handling unit is also shown. Hot water piping to the air

handling unit is not shown, as hot water was not used in the main air handling unit. None

of the piping to the zones is shown, although hot water was used in the zones to impose a

load on the system.

The equipment is monitored and controlled by an extensive energy management system.

Direct digital controls (DDC) are used to control dampers, valves and other equipment. A

360 point data acquisition system allows sensor readings to be recorded as often as every

two seconds. These points include output signals to valves, pumps and dampers; as well

as sensor readings of temperatures flow rates, relative humidities and powers. Virtual

points, which are values calculated from other points, can also be set up.

The cooling system contains a 50 ton reciprocating chiller. It has six cylinders, coupled

into 3 stages, and the refrigerant used is R-22. The cooling coil is rated at 300 KBtu/hr,

which is one-half the total capacity of the chiller. The associated condenser is air cooled

with six fans, which are controlled in pairs, allowing two, four or six fans to operate at

once. Two pumps are used to circulate the chilled water. One pump functions at a constant

flow rate of 120 gpm, pumping water through the main piping circuit. The continuous

flow of water protects against freezing in the main chilled water circuit. The second pump

is modulated to control the water flow rate through a branch loop that serves the cooling

coils.

An electric boiler, rated at 308 lbm/hr at 100 psig, provides steam and hot water. The hot

water is used to impose a cooling load on the system. Heating coils in the zones provide



sensible load, with the steam injectors imposing latent loads. If the system was run in a

heating mode, the boiler would be used to provide hot water to the heating coil in the main

air handling unit. The chiller also has the capability of using a heat recovery condenser to

provide hot water to the system, although this option was not used during this study.

The air handling unit contains the cooling and heating coils, a supply fan and filters. A

diagram, showing a schematic of the sensors in the air handing unit can be found in Figure

1.2. Sensor locations are indicated by a circle labelled with the sensor number. The

sensors allow temperature, humidity, and flow measurement to be made of the air entering

and exiting the air handling unit. Virtual points have also been programmed to find other

system parameters, including load and sensible heat ratio.

The supply fan is a 12,000 cfm variable speed fan with a motor outside the cold air stream

so that no heat is transferred from the motor to the cold air. In the return duct, there is a 5

HP return fan with a motor located within the air stream. Dampers are used to control the

exhaust air to the outside, and allow the system to take in the same amount of fresh air.

The ducts are not insulated and there is heat gain to the ducts from the surrounding air.

These heat gains are investigated in more detail by Lanoue (1991).

The system also has an air handling unit dedicated to providing desired "outside" air

conditions. The unit pre-conditions the outside air so that different outside air conditions

can be simulated. This air handing unit is only capable of conditioning the fresh air that is

introduced into the system, and does not affect the outside air blown across the air cooled
condenser. Because these tests were concerned with the operation of the chiller, and not

with the amount of fresh air exchange, the outside air conditioning station was not used.
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The facility is set up with four zones. The zones are equipped with cooling and heating

coils, and steam injectors to impose sensible and latent loads on the system, respectively.

Two of the zones consist only of coils and steam injectors. These are referred to as load

simulators 1 and 2. A schematic, showing the instrumentation associated with load

simulators 1 and 2 is shown in Figure 1.3. Sensor locations are represented by circles

enclosing the sensor number. Supply air is ducted to the coils through a variable air

volume (VAV) box, and the exiting air is exhausted into the return air duct. The only steam

injector used in this study was the steam injector in load simulator 1. The remaining zones

provided only sensible gains.

A third zone, called the thermal mass box, contains tall tubes that can be filled with up to 4

tons of water. The water serves to simulate thermal mass in a facility, and allows transient

loads to be studied. For this research project, system loads were held steady and the tubes

were kept empty. The fourth zone has capabilities for imposing solar loads, and room for

equipment or people to be used to impose loads. This zone was not used.

The VAV system controls the air flow into each zone. Dampers control the flow such that

the cold air entering the zone is just sufficient to meet the load. If desired, the VAV boxes

can be set up to mix return air with supply air. This control method ensures that a constant

amount of air is circulated through the zone, while varying the amount of supply air used.

For these tests, no return air was used and the total flow to the false loads was modulated.

The supply fan was modulated so that the zone loads were met.

The laboratory has the capability of being controlled in many different ways. For the

purposes of this study, the supply air temperature is controlled to a specific set point. The
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chilled water flow rate through the cooling coil was controlled in order to obtain the desired

supply air temperature.

Similarly, the VAV system modulates the air flow to maintain a constant "room"

temperature. The supply fan can be modulated in two ways. To simulate a typical VAV

system, the supply fan speed is modulated to maintain constant air pressure in the supply

air duct. As the VAV boxes open and close, the duct air pressure begins to rise or fall.

The supply fan speed is varied to maintain constant duct pressure. A second control

method involves fixing the VAV dampers into a fully open position. The supply fan is

controlled directly from return air temperature. If the return air temperature is too high, the

cool air flow increases. For most of the tests, the second control method, which is not

typical of VAV systems, was used. The data gathered at JCEM were used for two

projects, the one presented here and that of Lanoue (1991). The tests performed by Lanoue

required that the second VAV control method be used, which is suitable for the

optimization methodology investigated in this research.



Chapter 2

System Model

It is difficult to use a real system to run extensive tests. Real systems in operational

buildings are not usually fully instrumented, and can not be shut down for installation of

test equipment or equipment adjustment. It is easier to simulate a system by creating a

computer model, and to run tests on the model, rather than on the original system.

Modelling also allows the study of equipment or control changes that might be very

expensive or time consuming if the changes were implemented on a full sized system.

Because of the time involved to run a full test, and because weather can be a limitation in air

conditioning studies, it was decided that the HVAC system at JCEM should be modelled.

The modelling tool initially selected to create the system simulation was TRNSYS. This

computer program was designed to model thermal systems, including HVAC systems and

solar hot water heaters. TRNSYS consists of a large library of system components that can

be linked together into different system configurations. The system can then be fed

operating data and run just like a real system. Component models consist of subroutines,

which can be easily modified if needed.

While many of the subroutines in the TRNSYS library were used for the model, the level

of system detail provided by the main TRNSYS driver program was not required for this

study. In order to simplify the model, TRNSYS subroutines were linked together using a

10



11

simple driver program. Variables that were not investigated in this research, such as duct

and plenum temperatures, were thus removed from the simulation.

2.1 Initial Data Collection

Manufacturers' data were used to provide the basis for the system model, including basic

pump sizes, fan sizes, and maximum fluid flow rates. Some system operating data were

required to validate the component models. To this end, the system was operated over as

wide a range of operating conditions as possible. Data were taken over 5 minute intervals,

and each test ran between 30 and 90 minutes in total duration. A computer program was

written to allow rapid graphing of the data. Start up transients were identified from these

graphs, and were removed from the data sets. The chiller sometimes cycled between

stages, primarily at low loads. In this case, although the system no longer experienced

start up transients, it was dynamic. For these runs, the data were averaged, excluding

transients.

Throughout this thesis, the term "data point" is used for a single, 5 minute average. When

two or more data points are averaged together, it will be referred to as averaged data.

Often, changes in outdoor conditions caused the test settings to wander during the test. An

example of this can be seen in Figure 2.1. Data points taken between 15 and 45 minutes

were averaged together into a single value. Similarly, data points between minutes 50 and

70 were averaged together, and taken as a second value.
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Figure 2.1: Sample Plot of Operating Data Taken at JCEM

2.2 Chiller Model

The chiller performance was modelled by creating a curve fit from historical chiller data.

This method is limited in that it only provides power information. A mechanistic model

might be able to find the maximum possible chiller load at the given operating conditions,

for example. Because only power information was desired, and because chiller operating



13

data were available, the chiller was modelled with a curve fit. A copy of the subroutine

developed to model the chiller can be found in Appendix A.

The chiller was monitored over a wide range of operating points, and a separate curve fit

was created for chiller power for each condenser fan setting. The variables used for the

curve fit were outside air temperature, chilled water set point and chiller load. The curves

are of the form

Power = Co + C, (Tamb) + C2 (Tamb)2 + C3 (Tchw) + C4 (Tchw) 2 +

C5 (Load) + C6 (Load)2

and were developed using a least-squares method.

The curves were visually checked for accuracy by plotting the actual chiller power against

the chiller power calculated by the curve. This graph can be found in Figure 2.2. The plot

used chiller data averaged over each run. All runs created for this research project are

plotted, as well as some that were performed on the chiller with a similar chiller set-up that

do not directly pertain to this research. A graph of chiller performance data is presented in

Appendix H.

It is clear from the graph that the model does a good job in predicting the chiller power.

The largest discrepancy is 1.86 KW, which results in an error of 7.3%. The root mean

square (RMS) of the data is 0.795 KW. The variations in chiller data can be attributed to
the nature of the data itself. Often the parameters were not steady over the entire length of

the test, so averages were used. Some of the points represent 5 minute averages. If the
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Figure 2.2: Graph of Modelled Chiller Power vs. Measured Chiller Power

parameters, such as outside air temperature, were changing slightly during the test, these

transients may be responsible for some of the data spread.

The chiller model used average operating data at operating points where the chiller cycled

severely. At higher loads, when the chiller cycling was not evident, six data points were

selected from each run for the model curve input data. Each point consisted of a five

minute average of data. At lower loads, a single, overall average of the chiller power as it

cycled was used for each run. A total of 128 points were used for the chiller model.
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2.3 Cooling Coil Model

The cooling coil was modelled using a subroutine developed by Braun(1989) that is one of

the components in the standard TRNSYS library. The subroutine creates a very detailed

model of the cooling coil. Coil dimensions and material properties are used to calculate

pertinent dimensions. Specifically, the total external coil area, which is the area "wetted"

by the air, is found from fin and tube dimensions. The total inside coil area, which is the

area wetted by the chilled water, is found from the tube dimensions. The flow area of the

air, used to find the air velocity, can be found from the external dimensions of the coil

tubes and the internal dimensions of the air duct.

Using the inner pipe diameter, the Reynolds number of the chilled water is found. The

Reynolds number is then used to find the heat transfer coefficient inside the coil tubes.

Similarly, the air flow area, and the mass flow rate of the air are used to find the Reynolds

number and the heat transfer coefficient of the air.

A heat exchanger analysis is performed. First, the coils are assumed to remain dry, and the

total heat transfer is calculated. A second analysis is performed assuming that some water

condenses from the air onto the cooling the coils. If the coil outlet water temperature is

below the dewpoint of the inlet air temperature, the wet analysis is used. This heat

exchanger model computes the outlet water and air conditions. Using these values, and the

inlet water and air conditions, the sensible and latent loads are calculated.

Several changes were made in this model to replicate the actual test results from JCEM. If

the water flow was assumed to always be turbulent, a more accurate result was obtained.
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Additionally, the heat transfer coefficient on the coils was increased by a factor of 1.5. The

results of these changes can be seen in Figure 2.3 and 2.4. In Figure 2.3, the results from

the unmodified subroutine are plotted against the actual test data. Most of the calculated

results show a predicted coil effectiveness less than the actual value. The results of the

modified subroutine are plotted against the measured results in Figure 2.4. By assuming

that the chilled water was always turbulent, and by increasing the heat transfer coefficient

directly by a factor of 1.5, the model has been improved to more accurately predict the test

results.

There are several reasons why these changes might more accurately model the cooling coil.

Because of the bends in the cooling coil piping, the water will probably never be truly

laminar. Mixing of the water would occur, and the flow could be turbulent. Also, if the

airflow over the coil is not uniform, the heat transfer coefficient may vary at different points

on the coil surface.

2.4 Pump and Fan Models

The pump for the main chilled water loop runs at a constant speed. Serving as a circulating

pump, it ensures that no localized freezing will occur in the chiller. Because the pump is

constant speed, its power is constant, and was modelled as a constant 1.25 KW. The

actual pump power ranged between 1.23 and 1.27 KW. With a total system power usually

over 20 KW, this error in the pump power is negligible.
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For the remaining pumps and fans, the operating data were used to create curve fits of the

following form.

Power = C1 + C2 ( ow) + C3  Flow,Max Power (Max Flow Max low !

Actual operating points and the curve fit derived from them are shown in Figures 2.5 and

2.6. for the supply fan and the return fan respectively. The same information for chilled

water pump #2 is graphed in Figure 2.7. The coefficients and operating data for all pumps

and fans can be found in Table 2.1.

Pump 2 Return Fan Supply Fan

0.2006 0.2828 0.1938
C2 -0.6010 -0.9251 -0.7207
C3 1.3515 1.6578 1.4652
R2  0.998 0.996 0.998
Max Power 2.0 KW 3.0 KW 9.0 KW
Max Flow 30,000 #/hr 12,000 cfm 30,000 #/hr

Table 2.1: Parameters for Pump and Fan Curve Fits

In all of the curves, the power begins to increase with decreasing flow rate. In actuality,

the curves should level off at very small flow rates. Examining the limit, at negligible flow

rates, there will still be losses in the equipment that will draw power. The curve does not
go through zero, but will level off. Because the fans and pumps never operate at such low

flow rates, however, the accuracy of the curves in this region is unimportant. As shown

by the graphs, the curves are accurate over the normal operating range of the equipment.
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Figure 2.6: Graph of Return Fan Power vs. Supply Air Flow
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2.5 Condenser Fan Model

The condenser fans are set with two, four, or six fans operating at one time. If the chiller

cycles off completely, the fans are also shut off. While the fans are on, the power of the

condenser fans is constant. If they cycle off, the average fan power over the averaged five

minute data reading drops. For each fan setting, a graph was created that shows the

measured fan power at various loads. The graph for four fans is shown in Figure 2.8.

.1 ^
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Figure 2.8: Graph of Condenser Fan Power vs. Load,
Showing Model of Fan Cycling.

At high loads, the curve is approximated as a constant power. At lower loads, the curve is

modelled as dropping off linearly after a specific load. Below a certain load, the chiller

begins to cycle off, shutting off the fans. In the case of four fans, as shown, the curve

begins to drop off after a load of approximately 170 KBtu/hr. The minimum load before

cycling was found to be 180 KBtu/hr for two fans and 145 KBtu/hr for six fans.

2.6 Controls

Unlike a real system, the model assumed that, if possible, all control temperatures are met

exactly. The chilled water temperature, supply air temperature, and room temperatures are

assumed to be met exactly, and are assumed constant. Ideal, instantaneous controls are
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also assumed. The supply air temperature was modelled as a controlled variable that could

be set as desired. The supply air flow rate is then varied to meet the load. The chilled

water temperature was also modelled as a controlled variable. The chilled water flow rate

was varied to obtain the desired supply air temperature. The return fan is controlled in the

same way as the supply fan. All of these control methods are the ones employed on the test

equipment.

2.7 System Model

All of these components were linked together to form a complete model of the system with

six system parameters as inputs: load, sensible heat ratio, ambient temperature, chilled

water set temperature, supply air set temperature, and number of operating condenser fans.

The FORTRAN program used to combine the component models is in Appendix B.

Some component models take these parameters directly as inputs. The condenser fan

power, for example, is a function of only the condenser fan setting and the load. Similarly,

the chiller model needs only load, chilled water temperature, and outside air temperature as

inputs. The cooling coil component model treats load, sensible heat ratio and supply air

temperature as outputs, and requires inlet air and inlet water conditions as inputs.

Similarly, the pump and fan curves take fluid flow rate as an input, which is not one of the

desired six inputs. If the return air temperature remains constant, the inputs that need to be

determined are the supply air flow rate, the chilled water flow rate and the return air

humidity.
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The supply air flow rate can be determined directly from the six input parameters. Figure

2.9 shows the system load on a psychometric chart. By assuming a constant return air

temperature, and by setting a supply air temperature, the total temperature change of the air

is found. This temperature change represents the sensible portion of the load.

1:

Load x SHR

Supply Air
Temperature

Return Air
Temperature

Figure 2.9: Psychometric Chart Showing Load Line

The sensible heat ratio allows the total load line to be found, and thus the total enthalpy

change of the air, on a per unit mass basis, is calculated. The total system load is:

Load = rh (in- iout)

Where th is the mass flow rate of air through the cooling coil and i is the enthalpy of the air.

The flow rate of the air required to meet the load can thus be found directly. A subroutine

was written to fimd the supply air flow, and is located in Appendix C.
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Once the air flow rate has been found, the inlet air humidity and the chilled water flow must

be calculated. These two cooling coil inputs are varied until the desired load and supply air

temperatures result. First, maximum chilled water flow is assumed. The inlet air humidity

is varied until the desired total load is achieved. These values of chilled water flow and

inlet air humidity will cause a specific outlet air temperature, unlikely to be the desired

supply air temperature. The chilled water flow rate is then set to its minimum value, and

the inlet air humidity is varied until the desired load is found. Again, an outlet air

temperature is found. If the desired supply air temperature lies between the values found at

maximum and minimum chilled water flow, a chilled water flow rate is estimated, and a

new outlet air temperature is found. This process continues until the desired load and

supply air temperature is reached. Two separate subroutines were used to search for the

operating conditions. One is used only when the sensible heat ratio is 1.0, and is found in

Appendix D. The second, which is listed in Appendix E, is used when there is some latent

load.

2.8 System Constraints

The real system is constrained in several ways. Fluid flow rates have set limits, determined

by the operating range of the fans and pumps. The chilled water set temperature must be

lower than the supply air set temperature. If there is not enough of a temperature difference

between the two set temperatures, the supply air temperature will not be achieved.

The model needs to handle these constraints. If a constraint is not automatically imposed
by the model, it needs to be added. If a constraint is built into the model, the model output

should indicate that the system is constrained.
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One important constraint that needs to be imposed on the model is the maximum supply air

flow rate. The supply fan is rated for 12,000 cubic feet per minute, and can provide

12,500 cfm at maximum speed. After the air flow rate is calculated, the value is checked

to ensure that it is below the 12,500 cfm limit. If not, the supply air temperature is stepped

down incrementally until the load can be met with 12,500 cfn or less.

The cooling coil has physical constraints that are also handled by the model. Sometimes,

for example, the cooling coil can not meet the desired load at the chilled water and supply

air temperatures given. Even at maximum inlet air humidity and maximum chilled water

flow, the total coil load may be less than desired. This usually occurs at settings that are far

from optimum and will not occur often The model does not try to adjust for the error,

instead an error message is printed. Similarly, sometimes the coil load is higher than the

desired load. Even at minimum chilled water flow and minimal inlet air humidity, the load

is higher than desired. Rather than adjusting for the constraint, the model simply prints an

error message.

A more common error is that the cooling coil cannot cool the air to the desired supply air

temperature. In this case, the model will adjust the supply air temperature up slightly. The

set temperature is increased until the temperature difference is sufficient or until some other

constraint is reached.

2.9 Model Verification

Once the model had been completed, it needed to be checked for accuracy against real

system data. Averaged data for each set of operating conditions were used. The operating
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conditions were then applied to the model to determine if the resultant calculated power was

the same as the measured power. Results are plotted in Figure 2.10.

The maximum error between the real power and the model is 3.13 KW, which amounts to

10.9 % of the total real power. This number is quite reasonable, as the largest error found

within the chiller curves was 7.3%. The RMS of the data is 1.97 KW. Because of the

errors associated with gathering real data, such as system transients, the model cannot be

expected to predict system values exactly.
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Figure 2.10: Graph of Model System Power vs. Measured System Power
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Additionally, there may be discrepancies between the model results and the real system due

to the way the real system is controlled. For example, there may be a range of chilled water

flow rates that provide a supply air temperature close to the desire set point. If the chilled

water flow is initially too high, it is reduced in order to meet the supply air set point. If the

chilled water flow is initially too low, the flow will be increased. The final resultant chilled

water flow may be different in these two cases, even though all other variables are held

constant. Because the model assumes perfect and instantaneous control, the model may

given an answer slightly different than either of the two measured above.



Chapter 3

Optimization

A large HVAC system can be controlled in many different ways. Often there are several

system configurations that could be used to meet the same load. A simple example

involves a zone with a cooling load of 12,000 Btu/hr and variable air volume control. The

load in this example is entirely sensible, and the room temperature is maintained at 72 OF.

One possible way to meet the load is to provide 400 cfm of cool air at 42 OF. The load can

also be met by providing 800 cfm of air at 57 OF. One way to choose which settings to use

is to select the settings that give the lowest system energy consumption.

The JCEM cooling system has five power consuming components: the chiller, the supply

and return fans, the condenser fans, and the chilled water pumps. The total power used by

these components depends on various operating variables. Some of the operating

variables, such as load, outside air temperature, and sensible heat ratio, can not be

controlled. Others, such as chilled water temperature, supply air temperature, and number

of operating condenser fans, can be easily controlled. For any set of uncontrolled

variables, there are many ways to set the controlled variables such that the load is met. The

purpose of optimal control is to select values for the controlled variables that minimize the

total system power.

28
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3.1 System Curve Fit

Jim Braun (1989) showed that the total power consumption of large HVAC systems can be

represented by a simple quadratic curve fit. The curve is shown here in matrix form.

J(f,M,u)=uTAu++ ufCf+ dTf++fTu+g

J is the overall system power. It is a function of f, the vector of uncontrolled variables; M,

the vector of discrete variables; and u, the vector of continuous controlled variables.

A, C, and E are coefficient matrices; b and d are coefficient vectors; and g is a scalar.

This equation is actually a set of curves, with one curve for each combination of discrete

variable settings. Discrete variables are any variable that can only be changed in discrete

increments, such as the number of fans or chillers operating at once. The system at JCEM

has only one discrete variable: the number of operating condenser fans.

Braun found that this expression can accurately predict the system power, especially at

settings close to optimum. The system curve can then be differentiated with respect to the

controlled, continuous variables, and set equal to zero. Solving the resultant equation for

the controlled variables yields the control settings to minimize the total system power.

In this research project, a slightly different equation was used to fit the system curve. The

curve is still in a quadratic form, but some of the terms have been removed, reducing the

number of coefficients required to create a curve fit. A full quadratic curve fit would
require 27 coefficients to be determined for each discrete variable setting. For this revised

curve fit, only 17 coefficients must be found for each discrete variable setting.
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The curve was originally created using a statistics program called MINITAB. Model-

generated operating data were used, in which each curve fit variable was varied over a wide

range of operating conditions. One feature of MINITAB is that it identifies the relative

statistical importance of each term of a curve fit. Using the MINITAB criteria, ten terms

were removed. By eliminating some of the less important terms, the curve will be less

accurate, but will require fewer coefficients. The revised curve is the following:

Power = Co + C1(Load) + C2(Load)2 + C3(SHR)+ C4(SHR)2

+ C5(Tsa) + C6(Tsa) 2 + C7(Tab) + C8(Tab)2 + C9(Tchw) + C1(Thw)2

+ C1(LoadXTsa) + Cl2(LoadXTchw) + CI 3(SHRXTsa) + C14(SHRXTchw)

+ C15(TsaXTchw) + C16(TambXTchw) (3.1)

Power refers to the total system power, load to the total system cooling load, and SHR is

the sensible heat ratio. Co thru C16 are the curve fit coefficients. Tamb and Tchw are the

ambient outdoor air temperature and the chilled water set temperature, respectively.

One primary advantage of this method of optimization is that no system modelling is

required. Only system operating data are needed to create the curve. This method could

ideally be applied to an existing HVAC system. Historical operating data would be used to

create a curve fit, and the expression would be used to derive an optimal control strategy.

3.2 Creation of Initial Curve Fit

The quality of a system curve fit is a result of the amount and range of data available from

which to generate the curve. When the HYAC system is newly installed and no historical
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operating data is available, the system must be operated without knowledge of optimal

settings. Once some operating data have been generated, an initial curve fit can be created

and used to determine optimal control settings. Later, data generated with the control

strategy, along with the initial operating data, are used to refine the system curves. Each

successive curve fit incorporates additional operating data, and is more accurate.

In this research, the computer model was used as the HVAC system. Initially, system

power values were generated with the computer model over the wide range of operating

conditions shown in Table 3.1. This table also includes the range of operating data taken at

JCEM to create the system model.

Variable Curve Input Data JCEM Data
Max Min Max Min

Load (KBtu/hr) 275 120 308 106

Sensible Heat Ratio 0.9 0.7 1.0 0.7

Outside Air Temperature (F) 90.0 50.0 91.4 40.6

Supply Air Temperature (0F) 60.0 50.0 60.0 49.5

Chilled Water Temperature (F) 48.0 40.0 49.9 39.0

Table 3.1: Range of Operating Conditions Used to
Create Initial System Curve

Care was taken to ensure that all variable settings used in the runs were within the ranges

used to create the model. In the case of outside air temperature, only a few tests were

performed at very low outside air temperatures. Because data were sparse below 500F, the

range of curve input was limited to values above 500 F. Ranges for load and sensible heat

ratio were also reduced due to sparse data near the range limits. The values from the model

were curve fit in the form of Equation 3.1, using least squares techniques.
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Once created, the curve fit of system power was compared with values generated from the

model. Two comparisons were made to verify the curve fit. First, the operating conditions

used to create the curve fit were inserted back into the curve. If the curve fit was perfect,

the system power calculated from the curve would match the model output exactly. The

actual results of this comparison are shown in Figure 3.1.
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Figure 3.1: Comparison of Power Calculated from Curve Fit vs.Power Used to Generate Curve Fit.
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Because all of the points are clustered tightly around the center line, it is clear that the curve

fit is good. The maximum error is 1.1 KW which represents a percentage error of 7.0%.

The RMS value is 0.30 KW. This graph, however, only shows that the curve accurately

represents the values used to create the graph. Figure 3.1 does not verify the ability of the

curve to interpolate operating conditions that were not specifically used to generate the

curve.

The second comparison used new operating conditions to compare the curve with the

model. The variables settings were within the ranges used to generate the curve, so the

results should be valid. These results are graphed in Figure 3.2.
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These values still show a good fit. As expected, the points do not cluster as tightly as in

Figure 3.1. The maximum error in this graph is 3.34 KW, or 12.3%. The RMS value is

0.86 KW. In the center of the graph, where the curve fit is best defined, the accuracy of

the curve is still quite good. At higher or lower powers, larger errors occur. If more data

points were used to generate this curve, and more points were used at the extremes of the

operating range, the curve fit would be improved. In an actual installation, the curve would

be refined in time as more data were gathered.

3.3 Creation of Control Strategy Using Curve Fit

Once the system curve fit was created and verified, it was differentiated with respect to the

two continuous controlled variables; supply air temperature and chilled water temperature.

The following two equations resulted.

aPower = C5 + 2 C6 (Tsa) + Cil(Load) + C13(SHR) + C15(Tchw)
aTsa

Power
= C9 + 2 C10 (Tsa) + C12(Load) + C14 (SHR) + C15(Tchw) + C16(Tamb)

aTchw

Solving these equations for the controlled variables yields the following equations:

Tsa =- [C5 + C1 (Load) + CI3(SHR) + C1s(Tchw)] (3.2)
2 C 6

Tchw = - [C 9 + Cl 2(Load) + CI4(SHR) + Ci 5(Tsa) + Cd(Tamb)] (33
2 C6 (3)
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These equations can be solved at any operating conditions to give the optimal settings for

chilled water temperature and supply air temperature. These equations are used in a

subroutine that finds the optimal control variable settings for a given set of operating

conditions. A listing of the subroutine is shown in Appendix F.

The optimization methods outlined above are demonstrated in the following example with

only one continuous controlled variable and one discrete variable. The outside air

temperature is fixed at 75.0 OF, with a load of 200 KBtu/hr and a sensible heat ratio of 0.8.

For this example, the chilled water temperature is held constant at 40.0 OF. Optimization

techniques are used to determine the ideal supply air temperature and the optimal number of

condenser fans.

Inserting these operating conditions into the equations for supply air temperature, the

recommended set temperatures are found at each fan setting. These temperatures, as well

as the estimated power consumption, can be found in Table 3.2. For this example, the

minimum power is obtained at a supply air temperature of 51 OF, with four condenser fans.

Number of Fans Supply Air Temp (OF) System Power (KW)

2 46.8 37.0

4 51.1 34.8

6 50.7 39.1

Table 3.2: Optimal Supply Air Temperature Settings and Associated
System Powers Calculated from System Curve
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These results can also be seen by graphing the system curves and selecting the optimal

supply air temperatures and fan settings from the graphs. The curves are shown in Figure

3.3. Clearly, the optimal setting of a supply air temperature of approximately 51 OF with 4

condenser fans closely matches the exact value shown in Table 3.2.

The system curves must also be compared with the true model behavior, to ensure that the

curves accurately represent the model. The model was run at the same operating conditions

used with the curve fit in this example. The supply air temperature was then varied, so that

the optimum setting could be determined using simple search techniques. A graph of the

model system power at various supply temperatures is shown in Figure 3.4. This graph

shows that the true model optimum of 51 OF at four condenser fans is accurately reflected

in the system curves.

Unlike the curve, the model has specific constraints on the range of feasible supply air

temperatures. There is a minimum temperature difference that must exist across the cooling

coil for the load to be met. For this example, the model required a temperature difference

of at least 9 OF across the cooling coil. As a result, supply air temperatures were limited to

values above 49 OF. For consistency, the curve results in Figure 3.3 are plotted with

dotted lines when unrealistically low supply air temperatures are shown.

Comparing Figure 3.3 and Figure 3.4, it can be seen that the curve predicts the system

behavior at 4 fans and 6 fans much more accurately that at 2 fans. All the curves predict the

total system power with reasonable accuracy, however the optimal supply air setting is
more accurately determined at settings of 4 and 6 fans. The system curves are known to be

more accurate close to the system optimum, and often do not performn well far from the
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optimum. The inability of the 2 fan curve to predict the system minimum may be because

any supply air temperature would be far from optimum with a setting of two condenser

fans.

3.4 Curve Constraints

When the supply air temperature and chilled water temperature are both optimized as

controlled variables, constraints arise on the allowable control settings. At some operating

conditions, especially at fan settings far from optimal, it is common for the control strategy

to recommend settings that are not physically possible. Two basic types of constraints

exist. First, the recommended settings can be unreasonably high or low. A chilled water

temperature of 20 OF, for example, is clearly not possible. Secondly, the settings of the

two controlled variables can be impossible to implement simultaneously. An example of

this constraint is a chilled water temperature that is higher than the recommended supply air

temperature. These constraints must be built into the optimization scheme.

The model was designed to adjust the continuous controlled variables if the values given

can not be implemented. If the supply air temperature can not be met with the given chilled

water temperature, for example, the chilled water temperature is deceased until the supply

air temperature and cooling load can be met. The resultant system power, however, may

be far from optimal.

Each of the controlled variables has specific limits. The most important constraint on the
chilled water set temperature is its lower bound. The chilled water temperature can not be

less than 32 °F, or freezing occurs. Actually, a higher limit is usually set to ensure no
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localized freezing occurs. At JCEM, the minimum chilled water set temperature is set at 39

OF. The optimization subroutine was modified so that if a chilled water temperature below

39 OF is recommended, the chilled water temperature is set to 39 OF. This temperature is

then used in Equation 3.2, with the other operating variables, to determine a new optimal

supply air temperature.

The supply air temperature is constrained by its maximum value. If the supply air

temperature is too high, no cooling can be done. This constraint does not usually arise

because at high supply air temperatures, very large amounts of air are required to obtain

any cooling. The large fan power associated with these high set temperatures results in

settings that are far from optimal. Thus, the control strategy curves rarely yield high

recommended supply air temperatures.

The second type of constraint involves the interaction of the two controlled variables. A

supply air temperature setting that is lower than the chilled water temperature is clearly

impossible, although both the chilled water temperature and the supply air temperature may

appear reasonable if viewed independently. This constraint is a function of the cooling

coil, which requires a minimum temperature difference between the chilled water and

supply air temperatures. The constraint must be quantified and supplied to the optimization

subroutine.

In order to clearly defime this constraint, the model was run at a variety of operating

conditions. In each run, the supply air temperature was incrementally decreased while the
chilled water temperature was increased. The settings were allowed to approach each other

until the minimum temperature difference was found, below which the load could not be
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met. The results of these runs are plotted in Figure 3.5. Additionally, system runs where

the temperature difference was not forced to a minimum are also plotted in Figure 3.5.

Both sets of values clearly show that there is a minimum possible temperature difference,

which is a function of load.
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values plotted for the minimum temperature difference. Further attempts to describe the

constraint revealed that the minimum temperature is also a function of sensible heat ratio.

The constraint was then quantified using the following equation.

Tsa- Tchw = K0 + Kl(Load) + K2 (SHR) (3.4)

This equation predicts the minimum required difference between the supply air temperature

and the chilled water temperature within approximately 1.5 OF. It is possible that the

difference could be more accurately predicted if a more complex curve was used. Because

this curve may be difficult to determine for a real system without extensive testing, an effort

was made to keep the curve as simple as possible.

Once the constraint curve was developed, it was incorporated into the optimization

procedure. At any particular set of operating conditions, the minimum difference between

the supply air temperature and the chilled water temperature is calculated using Equation

3.4. The optimal control settings are then calculated using Equations 3.2 and 3.3. The

recommended supply air and chilled water temperatures are checked to ensure that the

temperature difference is larger than the minimum difference calculated from the constraint.

If the recommended settings are not acceptable, a new calculation takes place. Equation 3.4

is solved for the supply air temperature and substituted back into Equation 3.1. This yields

a new system power curve that includes the required constraint. As before, the curve is
differentiated with respect to the controlled variable, producing Equation 3.5, shown

below.
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Power = C5 + 2 C6(Thw +KO+ K1 (Load) + K2 (SHR))

'Tchw

" CIO + 2 C11(Tchw + K0 + K1 (Load) + K2 (SHR))

+C 12 (Load) + C13 (Load) + C14 (SHR) + C15 (SHR)

+"2 C16 (Tchw + K0 + K1 (Load) + K2 (SHR)) + C17(Tamb) (3.5)

Chilled water temperature is the only controlled variable, because of the implementation of

the constraint. This equation can then be set equal to zero, and solved to find the

recommended chilled water temperature. Once the chilled water temperature is found,

Equation 3.4, which defines the minimum difference between supply air temperature and

chilled water temperature is used to determine the optimal supply air temperature.

After the optimization procedure was defined, the revised methodology was verified

through testing using the computer model. A specific set of operating conditions was

selected. The load was set at 200 KBtu/hr, with a sensible heat ratio of 0.8. The outside

air temperature was 75.0 OF. With these variables held constant, the model was run with a

large range of supply air temperatures and chilled water temperatures. Both controlled

variables were varied in 1 OF increments between 40 OF and 60 OF for all three fan settings.

Some of the resultant operating strategies were unfeasible in that the violated system

constraint. Running all conceivable combinations of controlled variables ensures,

however, that all viable combinations of the controlled variables were run. The optimal

control variable settings for each fan setting were then found. These values, along with the
optimal settings found using the curve fit and constraints, are shown in Table 3.3.
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2 Fans - Curve without constraint
2 Fans - Curve with constraint
2 Fans - Model

4 Fans - Curve without constraint
4 Fans - Curve with constraint
4 Fans - Model

6 Fans - Curve without constraint
6 Fans - Curve with constraint
6 Fans - Model

Supply Air
Temp (OF)

47.1
48.7
50.0

54.6
55.1
54.0

51.4
51.9
52.0

Chilled Water
Temp (OF)

41.8
40.0
40.0

52.7
46.4
45.0

45.2
43.2
42.0

System
Power (KW)

37.0
37.2
37.6

32.4
33.3
33.7

38.5
38.8
38.7

Table 3.3: Comparison of Actual Model Optimum with Optimum
Found Using System Curve and Constraints.

The recommended temperature settings are not exact because of the simplicity of the

constraint curve. The difference between the minimum power predicted by the curves and

the actual optimum power is small. At a setting of 4 fans, there is 1.1 OF, or 2.0%,

difference between the recommended supply air temperature and the actual optimum set

point. Similarly, there is a 1.4 OF, or 3.1% difference between the recommended and

actual chilled water temperature. The resultant difference in power is only 0.4 KW, or

1.2%.

The importance of the constraint curves is very well demonstrated by the results listed in

Table 3.3 for four fans. Without the constraint curve, the recommended supply air

temperature and chilled water temperature differ by less that 2 OF. When the constraint is

implemented, the temperature difference increases to 8.7 OF, and the actual model optimum

shows a temperature difference of 9 OF.
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A breakdown of the total optimum at each fan setting is shown in Figure 3.6. The system

powers are the same results presented in Table 3.3 for optimization performed with a

constraint curve.
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Figure 3.6: System Power Breakdown by Component

As the number of condenser fans is increased, the condenser fan power increases. The

reduction in chiller power associated with switching from two to four condenser fans is

large enough that the condenser fan power increase is offset by the decrease in chiller

power. If additional condenser fans are added, however, there is no additional reduction in

chiller power.
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Because the optimum supply air set temperature is different for each fan setting, the supply

fan power also varies. With four fans, the supply air temperature is higher than at settings

of two or six fans, so the supply fan power is also higher. The increased supply air

temperature allows a higher chilled water temperature set point, which is responsible for

some of the decrease in chiller power.

It is important to remember that Equation 3.4, which describes the supply air and chilled

water constraint, is linear. The curve is only designed to give settings that result in near

optimal control. Table 3.3 clearly shows that system optimization methods using an overall

curve fit, when augmented by well documented constraints, successfully minimizes the

overall system power.



Chapter 4

Application of Optimization Methods

A series of runs was set up to examine how effective the optimal control strategy might be

if implemented into a real HVAC system. As before, the model was used in lieu of an

actual system. Hourly outside air temperatures and humidity ratios were taken from a

weather file and used to create hourly system loads and sensible heat ratios. The loads and

sensible heat ratios were combined with control strategies to generate operating conditions

for model input.

The HVAC model was run once without optimal settings, where supply air temperature,

chilled water temperature and fan settings remained constant. A second run was done

using optimal control techniques. The resultant system powers were then examined to

determine the effectiveness of this optimization methodology.

4.1 Generation of Uncontrolled Variable Settings

The HVAC model requires six inputs: load, sensible heat ratio, outdoor air temperature,

supply air temperature, chilled water temperature, and number of condenser fans. The

three uncontrolled system variables; outdoor air temperature, system load, and sensible heat

ratio, were based on information from the weather file. Hourly weather data were used to
generate hourly system operating conditions.

46



47

The most important features of the input data are that a wide variety of operating conditions

were experienced by the system, and that no inadvertent relationship between independent

variables was created. The typical summer outdoor air temperatures must also fall within

the operating ranges used to generate the model. In this case, data from Nashville,

Tennessee were readily available, and met the necessary range criteria.

Outdoor ambient temperatures were taken directly from the weather file. High and low

outdoor air temperatures were eliminated so that temperatures were always within the

required range. At outdoor air temperatures below 50.0 OF, it was assumed that there

would be no chiller load. The outdoor temperature was included in the input file, but the

system load was set to zero. At temperatures above 90 OF, the temperature was reduced to

90 0F. This ensured that all ambient temperatures fell within the outdoor air temperature

range used for the system model. The cooling season was assumed to run from May 1

through September 30.

A sensible heat ratio independent of any other variables was derived from the outdoor

humidity records. This was done to ensure the independence of all the curve fit variables.

In a real building, internal gains, which are independent of other variables, effect the

sensible heat ratio. At humidity ratios of 0.006 lbwAb& or below, a sensible heat ratio of

0.9 was assumed. When the outdoor air humidity ratio is 0.0 14 lbw/lbd or above, the

sensible heat ratio was set to 0.7. Linear interpolation between these two points provided

sensible heat ratios for all other outdoor humidities. This system of generating sensible

heat ratio gave values that vary from hour to hour, but that always remain between 0.7 and

0.9.
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Three building cooling load proffles were developed. One was used for weekdays, and

one for weekends. The third was used for Mondays, when a real building might have to be

cooled down after a hot weekend. These three load proffles are shown in Figure 4.1.
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Figure 4.1: Plot of Load Profiles

They are designed to be added onto a base load that varies from day to day. The absolute

values of the load profiles change daily, but the profile shapes do not. The same load

profiles were used for both the fixed variable run and the optimization run, regardless of

the control strategy.
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In a real facility, the building load varies throughout the year, and the load is at least

partially based on outdoor air temperature. For this test, the load was intentionally not

directly related to the outdoor air temperature because both the building cooling load and the

ambient outdoor temperature are independent inputs to the optimization curve. Any direct

correlation between them might interfere with the curve fit, and thus the optimization

methodology

To avoid relating the hourly load profile to the hourly outdoor air temperature, a base load

was correlated to the outdoor temperature at midnight This base amount was then added

onto each hour of the daily load profile. As the weather changed seasonally, the system

load slowly changed. There was no direct relationship in a given hour, however, between

the load and the outdoor air temperature.

4.2 Selection of Controlled Variable Settings

Two different strategies were used to generate values for the controlled variables. One

strategy used constant settings for each control variable. The other strategy involved using

the optimization techniques outlined in Chapter 3.

4.2.1 Fixed Variable Settings

The first run performed was one in which all controlled variable settings remained constant.

The chilled water temperature was set at 42 OF, with a supply air temperature of 53 0F.
Four condenser fans were operational at all times. This run was designed to simulate

constant controls with no optimization, and was used as the reference run.
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It was not possible to find constant supply air temperature and chilled water temperature

settings that worked for all operating conditions. Settings that worked for low loads, for

example, would violate system constraints at higher loads. If conditions arose where the

load could not be met with the specified variable settings, the model varied the settings

slightly. If the supply air temperature was too low, and could not be met with the

specified chilled water temperature setting, the chilled water temperature was decreased and

the supply air temperature increased until a viable set point was found. For both the

chilled water temperature and the supply air temperature, the maximum adjustment made

was 1.3 0F.

4.2.2 Optimal Variable Settings

The second run performed used optimization procedures to determine the controlled

variable set points. Part of the optimization technique includes creating a curve fit of

system operating data. A run with constant controls can not be used to generate an

optimization curve, because the curves include supply air temperature and chilled water

temperature as variables. In order to get a curve fit, the control variables must be varied.

For the first month of the optimization run, the controlled variable settings were varied

throughout the test. This month of values served to map the system power.

For the month of May, the supply air temperature was varied each hour. It ranged from

50.0 0 F up to 54.5 OF in 1.5 OF increments. Its value was simply stepped up 1.5 OF each

hour. When a value of 56.0 OFwas obtained, 50.0 OF was used instead. Similarly, the

chilled water temperature was increased incrementally. Every four hours, it was increased

by10°,bgnigwt 90 0 Fby .0 F, eginin wih 3.0F, and with a maximum value of 43.0 F.The number
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of condenser fans was dependant on load. At loads less than 175 KBtu/hr, two fans were

used. Four fans were used between loads of 175 KBtu/hr and 250 KBtu/hr, with six fans

operating at loads above 250 KBtu/hr. By modulating all the operating variables, this

mapping run produced data that could be used to generate a system curve. The operating

data from the month of May was curve fit into an initial system optimization curve.

An attempt was made to create an initial curve fit using only the first two weeks of May

data. When this curve was used for optimization, however, the optimization methodology

maximized system power rather than minimizing it. The optimization techniques used in

this project find the inflection point of the optimization curve. If the curve fit is good, the

inflection point will be the system minimum. If not enough data is used for the initial curve

fit, however, the inflection point may be a maximum.

If the initial curve yields maximum power set points, the data that is generated from the

model will be far from optimal. When the data generated with maximum power set points

was used to revise the system curve, the curve did not significantly improve. It is very

important that the initial curve which begins the optimization procedure exhibits the same

general trends as the actual system power.

Once the system curve was developed, the optimization began. The model was run though

June weather data using the rough optimization curve from the first month's mapping run.

The data from June, which should be near optimal, and the data from May, with no

optimization, were then combined and a revised optimal curve was created. This process
continued until all the cooling season weather data had been run. At the end of each month,
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all previous operating data were curve fit, and the revised curve was used for the next

month.

It should be recognized that the month of May was never optimized. In a real system, the

initial data used to create an optimization curve must be gathered before the optimization can

begin. In a simulation, it is possible to used later data from June, and retro-actively

optimize May. Because this would be impossible to perform on a real system, May was

not optimized during the simulation.

The final results of these tests were two sets of operating data. One, the reference run,

used no optimization methods. The second simulated an optimal control strategy being

built. It began with non-optimal data and used the data to create a system curve. It then

updated that optimization scheme monthly.

4.3 Results

Once each simulation was complete, the total system energy consumption and maximum

power were found for each month. The power consumed every hour was summed for

each month to determine the total kilowatt hours of energy consumption. These results are

presented in Table 4.1. May was not included because it was not optimized in either of the

two runs.

In every month, both the maximum power and the monthly energy consumption are less
when optimization techniques are used. The total energy savings are not large, only 1042

KWh, or about 1.8%.
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Month Fixed Set Points With Optimization
Max KW KWh Max KW KWh

June 55.6 13928 51.9 13743
July 59.0 15662 53.6 15405

August 57.7 15356 53.2 15070
September 55.1 13142 51.4 12860
Total 58120 57078

Table 4.1: System Power and Energy Consumption With and Without
Optimal Control.

The reason that there are only small energy savings is due to the condenser fan setting. For

the non-optimal run, the condenser had four fans operating at all time. For many operating

conditions, this is the optimal fan setting. Often, there is a limited range of possible supply

air and chilled water temperature set points. Regardless of what settings are selected for

these variables, they are not far from optimal. For most operating conditions, the constant

variable settings of the reference run are near-optimal, so for most hours, the power

consumption with constant control was close to the power consumption with optimal

control.

The impact of the optimization is more clearly seen in the peak power reduction. For the

month of July, the maximum power draw is reduced by 5.4 KW when optimization is

performed, which is a decrease of 9.2%. At high loads, the fixed variable settings are not

close to optimal. The constant control case was run with four condenser fans, and at high

loads, six fans is the optimal setting. Even though six fans consume more energy than

four, the additional condenser air flow reduces the chiller power sufficiently to off-set the

increase in fan power. Thus, the total system power is reduced.
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A more graphic example of the savings can be seen in Figure 4.2. A two day period is

plotted, showing the system power with and without optimization. Both days have

sensible heat ratios of 0.9. The second day experiences a maximum ambient temperature 5
°F higher than the first day; 90 OF instead of 85 OF. Also, the cooling load is slightly
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24 30 36 42 48

Constant Control
Optimal Control

Figure 4.2: Two Day Comparison of Optimal Control Results
and Fixed Control Results

higher for the second day, with a maximum of 280 KBtu/hr instead of 269 KBtu/hr. At

lower loads during the first day, the non-optimal settings consume almost the same power

as the optimal settings. Clearly, the constant variable settings are near optimal. At higher
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loads during the second day, the power consumption with optimal control is almost 10%

lower than the power consumption with non-optimal control. At these higher loads,

switching to six condenser fans is responsible for the majority of the decrease in the system

power.

4.4 Requirements for Implementation

The previous section indicated that if this strategy could be successfully implemented into a

real system, energy and power savings would result. There are several processes that can

be performed on a model that may be more difficult to perform on a real system. These

include the generation of data for an initial system curve, and the documentation of system

constraints.

In order to create an initial system curve fit, operating data must be gathered. It was

explained in Section 4.2.2 that the controlled variables must be modulated for an accurate

curve fit to result. If this optimization methodology were implemented with a real system,

a scheme would need to be developed to vary the supply air set temperature, the chilled

water temperature, and the number of condenser fans. A start-up control strategy is

required that spans as wide a range of operating conditions as possible. If the initial system

curve fit does not exhibit the same behavior as the system, the curve fit may not improve as

additional operating data are generated.

The constraint curve, which is necessary for this optimization methodology, must also be
quantified. The optimization requires a curve that describes the minimum allowable

difference between the chilled water temperature and the supply air temperature. This curve
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was originally developed by testing the system model at various loads and sensible heat

ratios. Testing would need to be done in advance for this optimization methodology to be

used. The curve describing the constraint was intentionally kept simple, so that it would be

easy to document in a real system.



Chapter 5

Conclusions and Recommendations

5.1 Summary

The objective of this research was to apply optimization techniques developed by Braun

(1989) to a model of the cooling system at the Joint Center of Energy Management

(JCEM). Although the JCEM may not represent the performance of an HVAC system in

an actual building, the methodology is applicable to actual buildings. A system model was

developed, based on operating data from JCEM. The system model encompassed

component models of the chiller, condenser fans, supply and return fans, chilled water

pumps, and the cooling coil. These models were linked together to form a system model

that takes six variables as input: load, sensible heat ratio, outside air temperature, chilled

water temperature, supply air temperature, and number of condenser fans.

Once the model was developed, it was used to generate a wide variety of system operating

data. Braun found that cooling system operating data can be curve fit to create a single

curve that yields system power for a given set of operating conditions. The model values

were curve fit, and the curve used to determine optimal control variable settings. A

constraint on the chilled water and supply air temperatures was found that was not reflected

in the optimization curve. A methodology for determining the nature of the constraint was
developed. The constraint was documented, and included as part of the optimization.
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Finally, the model was run under two control strategies, using real weather data. For one

strategy, control settings were constant, simulating a system without an optimal control

strategy. For the second strategy, optimization techniques were used. Model results based

on real weather data were curve fit into an optimization curve. The model was then run

with optimal controls, which gave more operating data. Periodically, the new operating

data were included in the curve fit, updating the control strategy. Energy and power

reduction due to optimization were then found by comparing the optimal run to the run with

fixed variable settings.

5.2 Conclusions

The system model was developed based on operating data from JCEM. The operating data

used for the model must include as wide a range of operating data as possible in order to

develop an accurate model. The range of viability of the model is strongly dependent on

the range of operating data used. Enough data must be gathered to make the curve fit

meaningful. Several component models, including the chiller, fans, and pumps, consist

primarily of individual performance curves. Care must be taken that the curve fit variables

for these component models span a range at least as broad as the anticipated range for

which the model will be used.

When the optimization procedure is started, operating data are used to create the initial

optimization curve. This data must span a wide range of operating conditions, so that the

overall shape of the curve displays the same trends as the actual system. If the curve fit
demonstrates the same characteristics as the system, the fit will improve as more data are

generated and the curve is updated. If the curve is inaccurate, the data that are generated
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may not improve the curve. A poor initial curve may maximize power, rather than
minimizing it.

There are details of system operation that are not well documented by the system curve.

The curves used in this study may recommend temperature set points for the chilled water

and the supply air which are physically impossible. For any specific load and sensible heat

ratio, for example, there is a minimum possible temperature difference across the cooling

coil. The curve may recommend a temperature difference less than the minimum. The

minimum temperature difference was described using an equation separate from the

optimization curve. When the recommended supply air and chilled water temperature did

not meet the constraint, the constraint was imposed on the optimization. This constraint

exists for all HVAC systems, however the optimal control settings recommended by the

system curve may not always violate the constraint.

Documentation of this constraint was achieved through system testing. The system

controls were set to increase the chilled water temperature and decrease the supply air

temperature until the minimum temperature difference was found. A real system may need

to undergo a brief period of testing to document this constraint before an optimization

strategy can be implemented.

The results in Chapter 4 show that energy and power reductions are possible through the

use of these optimization techniques. For the system model used in this research, the

primary energy savings occur from selecting the optimal fan setting. Due to system
constraints, the continuous variables were found to have a small range of possible values;

thus, any set point that is selected is near the optimal value. Discrete variables had no such
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constraints. Changing the discrete variable settings can have a large impact on the system

energy consumption for this system. For this research, optimization reduced peak power

significantly, but had only a small effect on overall energy consumption.

The results here, for several reasons, are conditional to the JCEM test facility. Some

parasitic heat gains to the air stream that often occur in real systems are not included in the

test facility. The energy savings do not include all the factors that might be important in an

actual building. The air temperature entering the cooling coil was modelled as constant. In

an actual building, at low air flow rates, the air temperature entering the cooling coil will be

higher than at high flow rates, which will improve the effectiveness of the cooling coil.

5.3 Recommendations

Several further areas of research arose during the course of this research that were not

thoroughly investigated in this project. Specifically, the best methods of initiating and

building optimization curves and constraint curves have not ben determined.

Data must be gathered to create an initial optimization curve. Ideally, data could be

gathered through normal system operation. Also, the data would ideally include wide

ranges of operation for all the system variables. It is currently unclear whether normal

system operation will provide a satisfactory range of data to create initial curves. Further

investigation needs to be done into the best way to collect data for the initial curve, and

exactly how broad the range of initial data must be to create a viable initial system curve.
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Once the performance curve has been generated, it should be updated periodically based on

more recent system operation. A strategy for revising the system curves is a possible topic

of further study. The total number of data points required for a good curve fit, as well as

the frequency with which the curve should be updated, needs further investigation.

In this research project, the system curves were simplified to make initial curve generation

easier. Less important terms were discarded, which reduced the required number of

coefficients. The accuracy lost by reducing the curves is currently unknown. Once large

amounts of data have been gathered, it may be possible to switch from the simplified curve

to a more detailed curve for better accuracy. The system curve itself should be examined

more thoroughly, so that the trade-off between simplicity and accuracy is well documented.

Similarly, documentation of system constraints was not researched extensively in this

work. The need for a system constraint curve was researched, as well as the use of a

constraint curve as part of the optimization methodology. In this research, one system

constraint was the minimum difference between the supply air and chilled water

temperature. A simple curve was used successfully in this project, although there may be

better forms of the constraint curve.

As with the initial system data, the best method for collecting constraint data is unknown,

and further research into gathering constraint data is needed. In this study, system testing

was used to determine the constraint curve, although there may be a way to create adequate

constraint curves from manufacturers cooling coil data, or from historical operating data.
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The HVAC system model used for this research simulated only steady state conditions,

whereas a real system experiences transients. Controls were assumed to be ideal and

instantaneous, rather than dynamic. The effects of transients on the optimization

methodology should be researched, including controls that require time to travel between

control settings.

The results of this research are specific to the JCEM system. The optimization

methodology should be applied to other types of systems to determine its applicability to

cooling systems in general. Guidelines should be developed for the application of the

optimization techniques to different system configurations or equipment types.

Finally, the optimization methodology was implemented on a system model, not on an

actual HVAC system. A more realistic test of the optimization techniques studied here

would involve implementing them on a real HVAC system.



References

ASHRAE Handbook of Fundamentals. American Society of Heating, Refrigerating, and
Air Conditioning Engineers, Atlanta, Georgia. 1989.

Braun, J.E., J.W. Mitchell, S.A. Klein and W.A. Beckman, "Applications of Optimal
Control to Chilled Water Systems Without Storage," ASHRAE Transactions, Vol.
95, Part 1, 1989.

Braun, J.E., "Methodology for the Design and Control of Central Cooling Plants," Ph.D.
Thesis, University of Wisconsin - Madison, 1988.

Hackner, R.J., "HVAC System Dynamics and Energy Use in Existing Buildings," M.S.
Thesis, University of Wisconsin - Madison, 1984.

Incropera, F.P., and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley

& Sons, New York, 1985.

Klein, S.A., et al., TRNSYS: User's Manual, University of Wisconsin - Madison, 1990.

Lanoue, R.W., "Fault Detection in Heating, Ventilation and Air-Conditioning Systems,"
M.S. Thesis, 1991.

Pape, F.L., "Optimal Control and Fault Detection in Heating, Ventilating and Air-
Conditioning Systems," M.S. Thesis, 1989.

Ryan, B.F., B.L. Joiner and T.A. Ryan Jr., Minitab Handbook, PWS-Kent Publishers,
Boston, 1985.

63



Appendix A
Chiller Subroutine

THIS SUBROUTINE MODELS THE CHILLER. THE FIRST TIME THAT
IT IS CALLED, IT CURVE FITS DATA FROM AN EXTERNAL DATA
FILE INTO A CHILLER MODEL. ON SUBSEQUENT CALLS, IT USES
THE CURVE TO GIVE CHILLER POWER. PORTIONS OF THIS
SUBROUTINE WERE TAKEN FROM THE TRNSYS MODEL TYPE 53
CHILLER MODEL. IT CALLS THE TRNSYS CURVE FIT
SUBROUTINE DFIT

subroutine chiller (xin, out, itest, curve)
implicit none

DESCRIHON OF SUBROUTINES

DFIT: TRNSYS LIBRARY SUBROUTINE THAT CURVE FITS DATA
USING LEAST SQUARES TECHNIQUES.

C DESCRIPTION OF EXTERNAL FILESC
C CHILLKW.DAT: THIS FILE CONTAINS CHILLER POWER DATA TO
C BE CURVE FIT INTO THE CHILLER MODEL. ITS FIRST LINE
C CONTAINS ONLY THE NUMBER OF LINES TO BE READ. EACH
C SUBSEQUENT LINE CONTAINS, IN ORDER, THE NUMBER OF
C OPERATING CONDENSER FANS, CHILLED WATER SET
C TEMPERATURE, OUTDOOR AIR TEMPERATURE, SYSTEM
C COOLING LOAD, AND THE CHILLER POWER.
C
C DESCRIWTION OF VARIABLES
C

NDMAX:

ROUND:

COUNTER:

ITEST:
XDATA:
YDATA:

THIS PARAMETER DEFINES THE MAXIMUM NUMBER
OF DATA SETS THAT CAN BE USED IN THE
CURVE FIT

THIS FUNCTION ROUNDS OFF REAL NUMBERS TO THE
NEAREST INTEGER

THIS COUNTS THE NUMBER OF DATA POINTS AT
EACH FAN SElTING

FLAGS THE FIRST TIME THE SUBROUTINE IS CALLED
OPERATING CONDITIONS TO BE CURVE FIT
CHILLER POWERS TO BE USED FOR CURVE FIT (KW)
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C-
CC
C
C
C
C
C

c'

C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

---------------------------- ------------------------------------------------------------------------

------------

--------------- 
-----------

pl



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C-.

F2:F4:
F6:
IFLAG:
CPCHW:
IPRT:

LU:

LUW:

NDATA:

NFANS:
TCHW:
TAMB:
QH20:
PWR:
Z:
N,IJ:
CURVE:
TCHWIN:
FLWCHW:
TCHWSET:

XIN:
XIN(1):
XIN(2):
XIN(3):
XIN(4):
XIN(5):

TCHWOUT:
CLOAD:

integer round, counter, itest,ndmax,iprt,luw,ndata,iflag
integer ni,ij,nfans,lu
double precision xdata(7,ndmax), ydata(ndmax),f2(7),f4(7)
double precision f6(7),curve(50)
real z,pwr,qh2o,tamb,tchw,cpchwtchwouttchwsetflwchw
real xin(5),out(5),cload,tchwin
parameter (ndmax = 200)
common / lunit / luw

round(mum) = mum + sign(O.5,rnum)
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COEFFICIENTS OF THE CURVE FIT FOR TWO FANS
COEFFICIENTS OF THE CURVE FIT FOR FOUR FANS
COEFFICIENTS OF THE CURVE FIT FOR SIX FANS
ERROR FLAG FROM CURVE FIT SUBROUTINE
SPECIFIC HEAT OF CHILLED WATER (KBTU/LB-F)
FLAG INDICATING WHETHER OR NOT CURVE FIT

RESULTS SHOULD BE PRINTED
LOGICAL UNIT OF CHILLER DATA FILE
LOGICAL UNIT TO WHICH ERROR MESSAGES OR

RESULTS SHOULD BE PRINTED
ACTUAL NUMBER OF CHILLER DATA SETS TO BE

CURVE FIT
NUMBER OF CONDENSER FANS
CHILLED WATER TEMPERATURE (F)
AMBIENT OUTDOOR AIR TEMPERATURE (F)
COOLING COIL LOAD (KBTU/HR)
CHILLER POWER (KW)
HOLDING VARIABLE
COUNTERS
STORAGE ARRAY FOR THE CHILLER CURVE FIT
INLET CHILLED WATER TEMPERATURE (F)
CHILLED WATER FLOW RATE (LBS/HR)
OUTLET CHILLED WATER TEMPERATURE

SET POINT (F)
ARRAY CONTAINING ALL INPUTS TO CHILLER MODEL

INLET CHILLED WATER TEMPERATURE (F)
CHILLED WATER FLOW RATE (LBS/FIR)
AMBIENT OUTDOOR TEMPERATURE (F)
NUMBER OF OPERATING CONDENSER FANS
OUTLET CHILLED WATER SET TEMPERATURE (F)

OUTLET CHILLED WATER TEMPERATURE (F)
CHILLER COOLING LOAD (KBTU/HR)

C-
CC
C-

STATEMENT FUNCTION FOR ROUND-OFF OF REAL NUMBERS
TO NEAREST INTEGER

I ------------ ---------------- 
----------------- m

----------------------------- 
------------- m ----- ------------ M -m ----------- M-M m M-
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C SET UP PARAMETERS

cpchw = 1.0
iprt = 0
lu =3

C------------------------------------------------------------
C DETERMINE NUMBER OF DATA SETS
C-------------------------------------------------------------

if(itest.eq. 1)then
open(unit = lu, file = 'chillkw.dat',status='old')
rewind lu
read(lu,*)ndata
iflag = 0
if(ndata .gt. ndmax) then

write(luw, 1001) ndmax
stop

endif
if(ndata .It. 7) then

write(luw, 1007)
stop

endif

C............................................................
C IF DATA IS TO BE PRINTED OUT, PRINT HEADER
C............................................................

if(iprt.eq. 1)then
write(luw, 1008)lu

endif

C.............................................................
C SORT AND STORE DATA FOR TWO FAN EXPERIMENTS, AND
C PRINT DATA IF DESIRED
C............................................................

counter = 0
do 100 n = 1,ndata

read(lu,*)nfans,tchw,tamb,qh2o,pwr
if(iprt.eq. 1)then

write(luw, 1009)n,tchw,tamb,qh2o,pwr
endif
if(nfans.eq.2)then

counter = counter + 1
xdata(1,counter) = 1.0
xdata(2,counter) = tamb
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xdata(3,counter) = tamb**2
xdata(4,counter) = tchw
xdata(5,counter) = tchw**2
xdata(6,counter) = qh2o
xdata(7,counter) = qh2o**2
ydata(counter) = pwr

endif
continue

REWIND TAPE, AND SET UP FOR NEXT READING

rewind(lu)
read(lu,*)ndata

DOUBLE PRECISION CURVE-FIT OF POWER W/ 2 FANS

if(counter.gt.7) then
call dfit(7,ndmax,7,counter,xdata,ydata,f2,iflag)

C IF CURVE FIT FAILS, PRINT ERROR MESSAGE
C............................................................

if(iflag .ne. 0) then
write(luw,1002)

endif

C
C COMPARE CURVE-FIT RESULTS WITH THOSE DETERMINED FROM
C THE DATA, IF DESIRED
C

if(iprt.eq. 1) then
write(luw, 1012)
do 150 n = 1,counter

Z=0.
do 125 i = 1,7

z = z + f2(i)*xdata(i,n)
continue
write(luw,1015) n, z, ydata(n)

continue
endif

else
write(luw,1020)

endif

100

C-
C

C-
c

125

150

k, -------------------------------------------------------------------------------------------------------I
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c-
cC-

200

SORT AND STORE DATA FOR FOUR FAN EXPERIMENTS

counter --0
do 200 n = 1,ndata

read(lu,*)nfans,tchw,tamb,qh2o,pwr
if(nfans.eq.4)then

counter = counter + 1
xdata(1,counter) = 1.0
xdata(2,counter) = tamb
xdata(3,counter) = tamb**2
xdata(4,counter) = tchw
xdata(5,counter) = tchw**2
xdata(6,counter) = qh2o
xdata(7,counter) = qh2o**2
ydata(counter) = pwr

endif
continue

C............................................................
C REWIND TAPE, AND SET UP FOR NEXT READING
C............................................................

rewind(lu)
read(lu,*)ndata

C............................................................
C DOUBLE PRECISION CURVE-FIT OF POWER W/FOUR FANS
C............................................................

if(counter.gt.7)then
call dfit(7,ndmax,7,counter,xdata,ydata,f4,iflag)

C.............................................................
C IF CURVE FIT FAILS, PRINT ERROR MESSAGE
C.............................................................

ff(iflag .ne. 0) then
write(luw, 1004)

endif

C
C COMPARE CURVE-FIT RESULTS WITH THOSE DETERMINED FROM
C THE DATA IF DESIRED
C

if(iprt.eq. 1) then
write(luw, 1013)
do 250 n = 1,counter

------------------------- M-M-M
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Z =0.
do 225 i = 1,7

z = z + f4(i)*xdata(i,n)
continue
write(luw,1015) n, z, ydata(n)

continue
endif

else
write(luw,1021)

endif

SORT AND STORE DATA FOR SIX FAN EXPERIMENTS

counter = 0.0
do 300 n = 1,ndata

read(lu,*)nfans,tchw,tamb,qh2o,pwr
if(nfans.eq.6)then

counter = counter + 1
xdata(1,counter) = 1.0
xdata(2,counter) = tamb
xdata(3,counter) = tamb**2
xdata(4,counter) = tchw
xdata(5,counter) = tchw**2
xdata(6,counter) = qh2o
xdata(7,counter) = qh2o**2
ydata(counter) = pwr

endif
continue

C.............................................................
C REWIND TAPE, AND SET UP FOR NEXT READING
C.............................................................

rewind(lu)
read(lu,*)ndata

C.............................................................
C DOUBLE PRECISION CURVE-FIT OF POWER WI/6 FANS
C.............................................................

if(counter.gt.7)then
call dfit(7,ndmax,7,counter,xdata,ydata,f6,iflag)

C.............................................................
C IF CURVE FIT FAILS, PRINT ERROR MESSAGE
C -----------------------------

225

250

C-
C
C-

300
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if(iflag .ne. 0) then
write(luw,1006)

endif

C
COMPARE CURVE-FIT RESULTS WITH THOSE DETERMINED FROMTHE DATA IF DESIRED

if(iprt.eq.1) then
write(luw, 1014)
do 350 n = 1,counter

Z=0.
do 325 i = 1,7

z = z + f6(i)*xdata(i,n)
continue
write(luw,1015) n, z, ydata(n)

continue
endif

else
write(luw,1022)

endif

C-----------------------------------------------------
C STORE CURVE FITS IN ARRAY

do 400 ij = 1,7
curve(ij) = t2(ij)
curve(ij+7) = f4(ij)
curve(ij+14) = f6(ij)

400 continue

endif

C.............................................................----------------------
C
C--

TAKE CURVE OUT OF STORAGE

do 450ij= 1,7
f2(ij)=curve(ij)
f4(ij)=curve(ij+7)
f6(ij)=curve(ij+14)

450 continue

c-
C
C- SET UP INPUTS INPUTS

C%.

325

350

I
---------- ---------------------------------------------------

L, -------------------------------------------------------------------------------------------------------

------------------------
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tchwin = xin(1)
flwchw = xin(2)
tamb = xin(3)
nfans = round(xin(4))
tchwset = xin(5)

C-------------------------------------------------------------
C IF THERE ARE CONDENSER FANS RUNNING AND CHILLED WATER
C FLOWING, CALCULATE THE CHILLER LOAD
C-------------------------------------------------------------

if(nfans.gt.0..and. flwchw.gt.0.) then
tchwout = tchwset
cload = flwchw*cpchw*(tchwin-tchwset)/1000.
tchw = tchwout

C------------------------------------------------------------
C THEN PERFORM POWER CALCULATIONS
C-------------------------------------------------------------

if(nfans.eq.2)then
pwr=f2(1)+f2(2)*tamb+f2(3)*tamb**2+f2(6)*cload+f2(7)*cload**2

+ +f2(4)*tchw+f2(5)*tchw**2
else

if(nfans.eq.4)then
pwr=-f4(1)+f4(2)*tamb+f4(3)*tamb**2+f4(6)*cload

+ +f4(7)*cload**2
+ +f4(4)*tchw+f4(5)*tchw**2

else
if(nfans.eq.6)then

pwr=f6(1)+f6(2)*tamb+f6(3)*tamb**2+f6(6)*cload
+ +f6(7)*cload**2
+ +f6(4)*tchw+f6(5)*tchw**2

else
write(luw,111 0)nfans

endif
endif

endif
else

C
C IF THE CHILLER ARE OFF, THERE IS NO FLOW, OR THE
C CONDENSER FANS ARE OFF, RETURN ZEROS
C

cload = 0.0
tchwout = tchwin
pwr = 0.0

endif



72

C SET UP OUTPUT
C -----------------------------------------------------------------------------

out(l) = tchwout
out(2) = flwchw
out(3) = cload
out(4) = pwr
return

C-------------------------------------------------------------
C ALL WRITE FORMATS ARE HERE
C-------------------------------------------------------------

1001 format(//2x,'***** error *****'/4x,'only ',i3,
'data points allowed in chiller curve fit!')

1002 format(//2x,'***** error *
0 /4x,' unable to perform chiller curve fit for two fans')

1004 format(//2x,'***** error ***** '
. /4x,' unable to perform chiller curve fit for four fans')

1006 format(//2x,'***** error *
. /4x,' unable to perform chiller curve fit for six fans')

1007 format(//2x,'***** error ***** '/4x,'a minimum of 6 data'
,' points are required in chiller curve fit!')

1008 format(//2x,'***** chiller input data ***** '
. 'logical unit ',i3//2x,'number chw temp',

amb temp load power')
1009 format(3x,i3,3x,4(lx, lpe10.3))
1012 format(//2x,'***** curve-fit results for two fans *****'//4x,1 'number p(model) p(data) (p=chiller power)')
1013 format(//2x,'***** curve-fit results for four fans *****'//4x,

* 'number p(model) p(data) (p=chiller power)')
1014 format(//2x,'***** curve-fit results for six fans *****'//4x,

. 'number p(model) p(data) (p=chiller power)')
1015 format(6x,i3,1x,2(lx,lpe11.3))
1020 format(//2x,'***** warning *****'

* /4x,' not enough data was supplied to curve fit 2 fans!')
1021 format(//2x,'***** warning* *

* /4x,' not enough data was supplied to curve fit 4 fans!')
1022 format(//2x,'***** warning* *

10 /4x,' not enough data was supplied to curve fit 6 fans!')
1110 format(//2x,'*****error*****'

. /4x,' number of fans = ',i4,/'number of fans',* 'must be 2, 4 or 6')

end



Appendix B
Main Model Program

C-------------------------------------------------------------
C THIS PROGRAM COORDINATES THE VARIOUS COMPONENT
C MODELS INTO AN OVERALL SYSTEM MODEL
C-------------------------------------------------------------

program model
implicit none

C- ------------------------------------------------
C DESCRIPTION OF SUBROUTINES
C----m------------------m------------M--------------------------------- m------ -------
C FINDOPT: FINDS THE OPTIMUM CONTROL VARIABLE SETTINGS
C FOR A GIVEN SET OF OPERATING CONDITIONS.
C FINDFLOW: FINDS THE REQUIRED SUPPLY AIR FLOW FOR A
C GIVEN LOAD AND SENSIBLE HEAT RATIO.
C FINDHR: FINDS THE COOLING COIL INLET HUMIDITY
C RATIO FOR SENSIBLE HEAT RATIOS
C LESS THAN 1.
C FINDTEMP: FINDS THE COOLING COIL EXITING AIR
C TEMPERATURE FOR SENSIBLE HEAT
C RATIOS OF 1.
C CHILLER: FINDS CHILLER POWER FROM CURVE FIT
C BASED ON OPERATING CONDITIONS
C
C DESCRIPTION OF EXTERNAL FILES
C

TEST.IN:

TEST.OUT:

BAD.OUT:

INPUT FILE FOR SYSTEM OPERATING CONDITIONS.
THE FIRST LINE CONTAINS ONLY THE NUMBER
OF SETS OF OPERATING CONDITIONS TO BE
READ. EACH SUBSEQUENT LINE MUST
CONTAIN, IN ORDER, CHILLED WATER SET
TEMPERATURE, SUPPLY AIR SET TEMPERATURE,
NUMBER OF CONDENSER FANS, OUTDOOR AIR
TEMPERATURE, SYSTEM COOLING LOAD, AND
SENSIBLE HEAT RATIO. IF OPTIMIZATION IS TO
BE DONE, THE FIRST 3 INPUTS MAY BE DUMMY
NUMBERS.

OUTPUT FILE OF OPERATING CONDITIONS AND
SYSTEM POWER

OPERATING CONDITIONS THAT RESULT IN AN ERROR
ARE PRINTED TO THIS FILE.
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CC
C
C
C
C
C
C
C
C
C
C
C
C
C



DESCRIPTON OF VARIABLES

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

C

CIN:
CIN(1):
CIN(2):
CIN(3):
CIN(4):
CIN(5):

COUT:

XIN:
XIN(1):
XIN(2):

XIN(3):
XIN(4):
XIN(5):

OUT:

OUT(l):
OUT(2-3):
OUT(4):

OUT(5):
OUT(6-10):

XLOAD:
TCHWSET:

GPMA:
GPMB:
GPMC:
RATIO:

SHR:
TAIN:
TSET:
AIRFLO:
TOUTA:

TOUTB"

TOUTC:

COUT(1-3): UNUSED
COUT(4): CHILLER POWER (KW)
COUT(5-10): UNUSED

CHWFLO: CHILLED WATER FLOW RATE (LBS/HR)
RATFLO: FLOW RATE AS FRACTON OF MAXIMUM

POSSIBLE FLOW RATE
SUM: TOTAL SYSTEM POWER (KW)

C
C
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INPUT TO THE SUBROUTINES FINDHR AND FINDTEMP
COOLING COIL INLET AIR TEMPERATURE (F)
COOLING COIL INLET AIR HUMIDI RATIO

(LBS H20/ LBS DRY AIR)
MASS FLOW RATE OF AIR (LBS/HR)
CHILLED WATER SET TEMPERATURE (F)
CHILLED WATER FLOW RATE (LBS/HR)
OUTPUT FROM SUBROUTINES FINDHR AND

FINDTEMP
COOLING COIL OUTLET AIR TEMPERATURE (F)
UNUSED
COOLING COIL OUTLET CHILLED WATER

TEMPERATURE (F)
CHILLED WATER FLOW RATE (LBS/HR)
UNUSED
SYSTEM COOLING LOAD (KBTU/HR)
TEMPERATURE SET POINT FOR SUPPLY

CHILLED WATER (F)
HIGHEST FEASIBLE CHILLED WATER FLOW (LBS/fIR)
LOWEST FEASIBLE CHILLED WATER FLOW (LBS/HR)
CURRENT GUESS OF CHILLED WATER FLOW (LBS/HR)
USED TO CALCULATE NEXT GUESS VALUE

FOR CHILLED WATER FLOW
SENSIBLE HEAT RATIO
TEMPERATURE OF INLET AIR TO COOLING COIL (F)
TEMPERATURE SETPOINT FOR SUPPLY AIR (F)
SUPPLY AIR MASS FLOW RATE (LBS/HR)
OUTLET SUPPLY AIR TEMPERATURE AT HIGHEST

FEASIBLE CHILLED WATER FLOW RATE (F)
OUTLET SUPPLY AIR TEMPERATURE AT LOWEST

FEASIBLE CHILLED WATER FLOW RATE (F)
OUTLET SUPPLY AIR TEMPERATURE AT CURRENT

GUESS OF CHILLED WATER FLOW RATE (F)
INPUT TO CHILLER SUBROUTINE
INLET CHILLED WATER TEMPERATURE (F)
INLET CHILLED WATER FLOW RATE (LBS/fIR)
OUTSIDE AIR TEMPERATURE (F)
NUMBER OF CONDENSER FANS
OUTLET CHILLED WATER TEMPERATURE (F)
OUTPUT FROM CHILLER SUBROUTINE

u ---------------------------------------------- --------------------------------------------------------
Ik.
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C
C
C
C
C
C
C
C
c
C
C
C
c
C
c
c
C
C
C
C
C
C
C

C1

PWR:
TAMB:
FACTOR:

CURVE:

LUW:

IFAIL:

I,K:

IFAILA:

IFAILB:

IFAILC:

NUMFANS:
NDATA:
KCK:

FLAG2:

real xin(5),out(10),xload,tchwset,gpma,gpmb,gpmcratio
real shrtain,tsetairflo,toutatoutb,toutc
real chwfloratflo,sumpwrtamb,cin(5),cout(10)
real factor
double precision curve(50)
integer luw,ifail,i,ifaila,ifailb,ifailc,numfans,k
integer ndatakck,flag2
common / lunit / luw

OPEN UP DATA FILES
TEST.IN: INPUT FILE
TEST.OUT: MAIN OUTPUT FILE
BAD.OUT: ANY OPERATING CONDITIONS THAT

GENERATE ERRORS ARE PRINTED TO BAD.OUT
------------- ---------- ------- ------

open(unit= 1,file= test.out',status= new )open (unit=2,file='bad.out', status='new')
open (unit--4,file=' test.i'',statu s = 'old')

--------------------

POWER OF INDIVIDUAL SYSTEM COMPONENTS (KW)
OUTSIDE AIR TEMPERATURE (F)
LOAD, BELOW WHICH THE CONDENSER

FANS CYCLE (KBTU/HR)
UNUSED, REQUIRED AS INPUT TO

CHILLER SUBROUTINE
LOGICAL UNIT TO WHICH ERROR MESSAGES
ARE WRIT-EN
CONDITION FLAG FOR SUBROUTINES FINDHR

AND FINDTEMP IT INDICATES WHETHER
SUBROUTINE OUTPUT IS AN ACTUAL POINT,
OR AN ESTIMATE

COUNTERS
CONDITION FLAG AT HIGHEST FEASIBLE CHILLED

WATER FLOW
CONDITION FLAG AT LOWEST FEASIBLE CHILLED

WATER FLOW
CONDITION FLAG AT CURRENT GUESS OF CHILLED

WATER FLOW
NUMBER OF OPERATING CONDENSER FANS
NUMBER OF OPERATING CONDITIONS TO BE RUN
FLAG TO MARK THE FIRST CALL TO THE CHILLER

SUBROUTINE
FLAGS WHEN THE SUPPLY AIR TEMPERATURE IS

DECREASED TO MEET A CONSTRAINT
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C SET UP DEFAULT UNIT TO WHICH TO WRITE ERROR
C MESSAGES AS THE MAIN OUTPUT FILE, AND
C WRITE COLUMN HEADERS
C-------------------------------------------------------------

luw =1
write(1,2001)
write(2,2001)
kck= 1

C-------------------------------------------------------------
C READ IN NUMBER OF DATA SETS, BEGIN TO LOOP
C THROUGH ALL DATA SETS BY READING IN FIRST
C SET OF OPERATING CONDITIONS
C-------------------------------------------------------------

read(4,*) ndata
do 400 k = 1,ndata

read(4,*)tchwset,tset,numfans,tamb,xload,shr

C
C SET UP INITIAL CONSTANTS AND COUNTERS
C,

tain = 76.5
i=0
flag2 = 0

C
C IF AT A NO LOAD CONDITION, WRITE 0 FOR ALL VARIABLES
C AND JUMP TO THE NEXT SET OF OPERATING CONDITIONS
C

if(xload.eq.0)then
write( 1,2003)xload,shr,0.0,0.0,0,tamb,0.0
goto 400

endif

C
C DETERMINE THE OPTIMAL CONTROL SETfINGS FOR
C THE CURRENT SET OF OPERATING CONDITIONS
C

call fmdopt(0,xload,shrtamb,tset,tchwset,numfans)

C
C FIND THE SUPPLY AIR FLOW RATE
C----------------
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call f'mdflow(xloadshr,tain,tsetairflo)

IF THE SUPPLY AIR FLOW RATE IS TOO HIGH, ADJUST THE
SUPPLY AIR TEMPERATURE DOWN AND FLAG THAT IT
HAS BEEN DECREASED. THEN FIND A NEW AIR FLOW RATE

if(airflo.gt.(12500*0.064*60))then
tset =tset - 0.1
flag2 = 1
goto 100

endif

SET UP INPUT VARIABLES FOR SUBROUTINES

xin(1) = tain
xin(3) = airflo
xin(4) = tchwset

BEGIN SEARCH FOR OPERATING CONDITIONS BY SETTING THE
CHILLED WATER FLOW TO MAXIMUM

gpma =30000xin(5) gpma
f=ai f= 0

E

C IF THERE IS ANY LATENT LOAD, USE SUBROUTINE FINDHR,
C OTHERWISE, USE SUBROUTINE FINDTEMP

if(shr.1t. 1.0)then
call findhr(xin,xdoad,foutifail)

ndcall findtemp(xin,tset,out,ifail)i

CU E

C USE TSE RESULTANT OUTLET SUPPLY AIR TEMPERATURE AS ONE
C SEARCH BOUNDARY. ALSO RETAIN THE CONDITIONS FLAG AT
C THIS POINT.
C

touta =out(l)fa li

100

C--
C
C
C
C--

k. ------------------------------------------------------------------------------------------------------

k -------------------------------------------------------------------------------------------------------

c-

c

c-

c
c
I
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C IF, AT MAXIMUM CHILLED WATER FLOW, THE LOAD IS LESS THAN
C THE DESIRED LOAD, THEN THE LOAD CANNOT BE MET.
C PRINT MESSAGES INDICATING SITUATION AND GO TO
C THE NEXT SET OF OPERATING CONDITIONS
C-------------------------------------------------------------

if((ifail.eq. 1).and.(shr.lt. 1.0))then
write(2,1000)
write(l,1000)
write(2,2004)xload,shrtchwsettsetnumfans,tamb
goto 400

endif

C-------------------------------------------------------------
C IF, AT MAXIMUM CHILLED WATER FLOW, THE OUTLET AIR TEMP. IS
C HIGHER THAN DESIRED, THE SUPPLY AIR TEMP. SETPOINT WILL
C NEVER BE MET. IF THE SUPPLY AIR TEMP. HAS NOT PREVIOUSLY
C BEEN REDUCED TO MEET OTHER CONSTRAINTS, INCREASE IT.
C ALSO, DECREASE THE CHILLED WATER TEMP. SETPOINT.
C THEN, RESTART THE CALCULATIONS WITH NEW SETPOINTS.
C

if(touta.gt.tset)then
if(flag2.eq.O)then

tset = tset + 0. 1
endif
tchwset = tchwset - 0.1
flag2--0
goto 100

endif

C
C CHECK TO SEE IF SUPPLY AIR TEMPERATURE SETPOINT IS MET.
C IF SO, GO STRAIGHT TO THE POWER CALCULATIONS
C

if((abs(touta-tset).le.0. 1).and. (ifail.eq.0))then
write(6,1001)i
goto 300

endif

CC CONTINUE SEARCH FOR OPERATING CONDITIONS WITH THE
C MINIMUM CHILLED WATER FLOW RATE.
C

gpmb = 7500
xin(5) = gpmb
ifail =0
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C IF THERE IS ANY LATENT LOAD, USE THE SUBROUTINE FINDHR,
C OTHERWISE USE FINDTEMP
C-----------------------------------------------------------------------------

if(shr.lt. 1.0)then
call findhr(xin,xload,out,ifail)

else
call findtemp(xin,tset,out,ifail)

endif

C-------------------------------------------------------------
C USE THE RESULTANT OUTLET SUPPLY AIR TEMPERATURE AS THE
C SECOND SEARCH BOUNDARY. ALSO, RETAIN CONDITIONS FLAG
C AT THIS POINT.
C-------------------------------------------------------------

toutb = out(1)
ifailb = ifail

C-------------------------------------------------------------
C IF, AT MINIMUM CHILLED WATER FLOW, THE LOAD IS GREATER
C THAN THE DESIRED LOAD, THEN THE LOAD CAN NOT BE MET.
C PRINT MESSAGES AND GO TO THE NEXT SET OF OPERATING
C CONDITIONS.
C

if((ifail.eq.2).and.(shr.lt. 1.0))then
write(1,1002)
write(2,1002)
write(2,2004)xload,shr,tchwset,tset,numfans,tamb
goto 400

endif

C

C IF, AT MINIMUM CHILLED WATER FLOW, THE OUTLET AIR
C TEMPERATURE IS LOWER THAN DESIRED, THE SUPPLY AIR
C TEMPERATURE SETPOINT WILL NEVER BE MET. PRINT
C MESSAGES AND GO TO THE NEXT SET OF OPERATING CONDITIONS
C

if(toutb.lt.tset)then
write(2,1005)
write(1,1005)
write( 2 ,2004)xload,shr,tchwset,tset,numfanstamb
goto 400

endif
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C
CHECK TO SEE IF SUPPLY AIR TEMPERATURE IS MET. IF SO, GO

STRAIGHT TO POWER CALCULATIONS.
C

if((abs(toutb-tset).le.0. 1). and.(ifail.eq.0))then
goto 300

endif

C-------------------------------------------------------------
C ONCE TWO SETS OF OPERATING CONDITONS HAVE BEEN FOUND
C THAT BOUND THE DESIRED LOAD AND SUPPLY AIR TEMPERATURE,
C ITERATIONS BEGIN UNTIL OPERATING CONDITONS ARE FOUND
C THAT YIELD THE DESIRED LOAD AND SUPPLY AIR TEMPERATURE.
C-------------------------------------------------------------

do 200 i = 1,50

C-------------------------------------------------------------
C IF EITHER OF THE SEARCH BOUNDARIES HAVE BEEN ESTIMATED,
C TRY THE MEDIAN CH[LLED WATER FLOW. OTHERWISE, LINEARLY
C INTERPOLATE A GUESS FOR THE CHILLED WATER FLOW.
C-------------------------------------------------------------

if(((ifaila.eq.2).or.(ifailb.eq. 1)).and.(shr.lt. 1.))then
ratio = 0.5

else
ratio = (toutb-tset)/(toutb-touta)

endif
gpmc = ratio*(gpma-gpmb)+gpmb
xin(5) = gpmc
fail = 0

C
C SELECT THE APPROPRIATE SUBROUTINE BASED ON LATENT LOAD.
C

if(shr.lt. 1.0)then
call findhr(xin,xload,out,ifail)

else
call fmdtemp(xin'tsetout'ifail)endif

C
C SAVE THE RESULTANT OUTLET SUPPLY AIR TEMPERATURE AND
C CONDITIONS FLAG.
C

toutc = out(l)
ffailc =fail

------------- -----------%.I
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C------
C CHECK TO SEE IF NEW POINT IS THE SOLUTION
C----------------------------------

if((abs(toutc-tset).le.0. 1).and.(ifail.eq.0))then
goto 300

endif
if((abs(toutc-tset).le.0. 1).and.(shr.eq. 1.0))then

goto 300
endif

C-------------------------------------------------------------
C IF THE NEW POINT IS NOT THE SOLUTION, USE IT AS
C A NEW SEARCH BOUNDARY
C-------------------------------------------------------------

if(ifail.eq.0)then
if(toutc.gt.tset)then

gpmb = gpmc
toutb = toutc
ifailb = ifailc

else
gpma = gpmc
touta = toutc
ifaila = ifailc

endif
else

if(ifail.eq. 1)then
gpmb = gpmc
toutb = toutc
ifailb = ifailc

else
gpma = gpmc
touta = toutc
ifaila = ifailc

endif
endif

200 continue

C
C IF NO SOLUTION IS FOUND AFTER 50 ITERATIONS, PRINT
C MESSAGE AND GO TO THE NEXT SET OF OPERATING CONDITIONS
C

write(2,1003)
write(1, 1003)
write(2,2004)xload,shrtchwsettset,numfanstamb
goto 400
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r

IF A SOLUTION HAS BEEN FOUND, CALCULATE POWERS FOR ALL
COMPONENTS, BEGINNING WITH THE CHILLER

300

C-
C
ci

cin(1) = out(4)
cin(2) = out(5)
chwflo = out(5)
cin(3) = tamb
cin(4) = real(numfans)
cin(5) = tchwset
call chiller(cin,coutkck,curve)
if(kck.eq. 1) kck=2
sum = cout(4)

FIRST PUMP POWER IS CONSTANT

sum = sum + 1.25

c ---------------------------------------------------------------------------------
C SECOND PUMP POWER IS FOUND FROM CURVE FIT
C-------------------------------------------------------------

ratflo = chwflo/(30000.0)
pwr=-(0.20058-0.60989*ratflo+1.3515*(ratflo**2))*2.0
sum = sum+pwr

C-------------------------------------------------------------
C SUPPLY FAN POWER IS FOUND FROM CURVE FIT
C

raflo = airflo/(12000.0*0.064*60.0)
pwr=-(0. 19381-0.72069*ratflo+1.4652*(ratflo**2))*9.0
sum = sum+pwr

C
C RETURN FAN POWER IS FOUND FROM CURVE FIT
C

pwr = (0.2828-0.92510*ratflo+1.6578*(ratflo**2))*3.0
sum = sum+pwr

C
C AIR COOLED CONDENSER POWER IS FOUND FROM CURVE FIT,
C AND THEN MAY BE REDUCED TO ACCOUNT FOR CHILLER
C CYCLING.
C

C
Ci

-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

I----------- ----------- -----------------
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pwr = 0.057415 + 1.5224*numfans
if(numfans.eq.2)then

factor = 180.0
endif
if(numfans.eq.4)then

factor = 170.0
endif
if(numfans.eq.6)then

factor = 145.0
endif

if(xload.lt.factor)then
pwr = xload/factor*pwr

endif
sum = sum+pwr

C-------------------------------------------------------------
C WRITE RESULTS TO OUTPUT HILE AND GO TO NEXT SET
C OF OPERATING CONDITIONS
C-------------------------------------------------------------

write(1,2003)xload,shr,tchwset,tset,numfans,tamb,sum
400 continue

stop

C-------------------------------------------------------------
C ALL WRITE FORMATS ARE BELOW
C-----------------------------------------------------

1000 format(lOx,' all loads < than desired load',f 'even at max chilled h2o flow')
1001 format(lOx,' solution found after ',i2,' iterations')
1002 format(lOx,' all loads > desired load',1'even at min chilled h2o flow')
1003 format(lOx,' after 50 iterations, no solution')
1004 format(l0x,'desired supply air temp too low',

'even at max chilled h2o flow')
1005 format(lOx,'desired supply air temp too high',I'even at min chilled h2o flow')
1006 format(lOx,'required air flow rate is too high')
2001 format(3x,' load',3x,' shr',3x,'chwt',3x,

sat',3x,'#f,3x,'tamb',3x,' pwr')
2002 format(3x,' load',3x,' shr',3x,'chwt',3x,

I'sat',3x,'#f ,3x,'tamb')
2003 format(3x,f5.1,3x,f4.2,3xf4.1 ,3x,f4. 1,. 3x,i2,3x,f4. 1,3x,f4. 1)
2004 format(3x,f5. 1,3x,f4.2,3x,f4. 1,3x,f4. 1,

. 3x,i2,3x,f4.1)

end



Appendix C
Subroutine to Find Supply Air Flow Rate

C-------------------------------------------------------------
C THIS SUBROUTINE FINDS THE AIR FLOW THROUGH THE COOLING
C COIL, GIVEN INLET CONDITIONS, SET POINTS, AND
C AND DESIRED LOAD AND SENSIBLE HEAT RATIO
C-------------------------------------------------------------

subroutine findflow(qtot,shrtin,tset,airflo)
implicit none

C-------------------------------------------------------------
C DESCRIPTION OF SUBROUTINES
C------------------------------------------------------------
C PSYCH: TRNSYS PSYCHROMETRICS SUBROUTINE, USED HERE TO
C FIND AIR ENTHAPLY AT A GIVEN TEMPERATURE AND
C HUMIDITY RATIO.
C
C DESCRIPTION OF VARIABLES
C-

PSYDAT: THESE ARE THE INPUTS TO THE TRNSYS SUBROUTINE
PSYDAT(1): AMBIENT AIR PRESSURE (ATM)
PSYDAT(2): AIR TEMPERATURE (F)
PSYDAT(3-5): UNUSED
PSYDAT(6): HUMIDITY RATIO (LBS WATER/LB DRY AIR)
PSYDAT(7): AIR ENTHALPY (BTU/LB)

HROUT: HUMIDITY RATIO OF AIR EXITING COOLING COIL (F)
QTOT: TOTAL COOLING LOAD (KBTU/HR)
SHR: SENSIBLE HEAT RATIO
TIN: AIR TEMPERATURE ENTERING THE COOLING COIL (F)
TSET: TEMPERATURE SET POINT OF AIR EXITING THE

COOLING COIL (F)
ENTHOUT: ENTHAPLY OF AIR EXITING THE COOLING

COIL (BTU/LB)
SENS: AIR ENTHALPY CHANGE DUE TO SENSIBLE

LOAD (BTU/LB)
ENTHMID: ENTHALPY OF AIR IF ONLY LATENT COOLING

WAS DONE (BTU/LB)
TOTAL: TOTAL AIR ENTHAPLY CHANGE ACROSS COOLING

COIL (BTU/LB)
AIRFLO: MASS FLOW RATE OF AIR (LBS/HR)
STAT: UNUSED, BUT NECESSARY INPUT TO

PSYCHROMETRICS SUBROUTINE
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LUW:C
C
C-

LOGICAL UNIT TO WHICH ERROR MESSAGES
SHOULD BE PRINTED

real psydat(9),hrout,qtot,shr,tin,tset
real enthout, sensenthmidtotal,airflo
integer stat
common / lunit / luw

C-
C
C-

AN OUTLET HUMIDIT RATIO IS GUESSED

hrout = 0.004
psydat(1) = 0.82

C-------------------------------------------------------------
C ENTHALPY EXITING THE COOLING COIL IS FOUND
C-------------------------------------------------------------

psydat(2) = tset
psydat(6) = hrout
call psych(2,4,0,psydat, stat)
enthout = psydat(7)

C------------------------------------------------------------
C FIND THE INLET ENTHALPY IF ONLY SENSIBLE COOLING IS DONE
C-------------------------------------

psydat(2) = tin
psydat(6) = hrout
call psych(2,4,0,psydat,stat)
enthmid = psydat(7)

C
C FIND ENTHALPY CHANGE DUE TO SENSIBLE LOAD, AND TOTAL
C ENTHALPY CHANGE
C

sens = enthmid - enthout
total = sens/shr

C
C USE TOTAL ENTHALPY CHANGE TO FIND AIRFLOW
C

airflo = qtot/total* 1000.0

return
end
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Appendix D
Subroutine to Find Supply Air Temperature

C-------------------------------------------------------------
C THIS SUBROUTINE DETERMINES THE OUTLET COIL SUPPLY
C AIR TEMPERATURE FOR A GIVEN SET OF OPERATING
C CONDITIONS AT A SENSIBLE HEAT RATIO OF 1.0.
C THE INLET HUMIDITY RATIO IS NOT FOUND, IT IS
C ASSUMED TO BE VERY LOW TO FORCE THE SENSIBLE
C HEAT RATIO TO BE 1.0
C-------------------------------------------------------------

subroutine fmdtemp(xin,tset,out,ifail)
implicit none

C-------------------------------------------------------------
C DESCRIPTION OF SUBROUTINES
C-------------------------------------------------------------
C COIL: TRNSYS TYPE 52 COOLING COIL SUBROUTINE. THE
C SUBROUTINE WAS MODIFIED SLIGHTLY TO MORE
C ACCURATELY MODEL THE ACTUAL SYSTEM COOLING
C COIL.
C-------------------------------------------------------------
C DESCRIPTION OF VARIABLES
C-------------------------------------------------------------

XIN: THESE ARE THE INPUTS REQUIRED FOR THE TRNSYS
TYPE 52 COOLING COIL SUBROUTINE.

XIN(1): COOLING COIL INLET AIR TEMPERATURE (F)
XIN(2): COOLING COIL INLET AIR HUMIDITY RATIO

(LBS WATER/LBS DRY AIR)
XIN(3): MASS FLOW RATE OF AIR (LBS/HR)
XIN(4): CHILED WATER SET TEMPERATURE (F)
XIN(5): CHILLED WATER FLOW RATE (LBS/HR)

OUT: THESE ARE THE OUTPUTS FROM THE TRNSYS
TYPE 52 COOLING COIL SUBROUTINE

OUT(l): EXITING SUPPLY AIR TEMPERATURE (F)
OUT(2-3): UNUSED
OUT(4): EXITING CHILLED WATER TEMPERATURE (F)
OUT(5-10): UNUSED

TSET: THE OUTLET SUPPLY AIR TEMPERATURE SET
POINT (F)

HR: INLET AIR HUMIDITY RATIO
(LBS WATER/LBS DRY AIR)

TOUT: OUTLET SUPPLY AIR TEMPERATURE (F)
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C IFAIL: VARIABLE TO DESCRIBE THE OUTLET
C AIR CONDMONS
C =1; OUTLET SUPPLY AIR TEMPERATURE IS GREATER
C THAN ITS SET POINT
C =2; OUTLET SUPPLY AIR TEMPERATURE IS LESS
C THAN ITS SET POINT
C LUW: LOGICAL UNIT TO WHICH ERROR MESSAGES
C ARE PRINTED
C-------------------------------------------------------------

real xin(5),out(10),tset,hrtout
integer ifail,luw
common / lunit / luw

C-------------------------------------------------------------
C FIND THE LOAD AND OUTLET AIR TEMPERATURE AT A LOW INLET
C HUMIDITY RATIO, WHERE THE SHR WILL CERTAINLY BE 1.0
C-------------------------------------------------------------

hr = 0.004
xin(2) = hr
call coil(xin,out)
tout = out(l)

C-------------------------------------------------------------
C SET CONDITIONS FLAG TO APPROPRIATE VALUE
C

if(tout.lt.tset)then
ifail= 2
return

endif

if(tout.gt.tset)then
ifail=1
return

endif

return

end



Appendix E
Subroutine to Find Inlet Air Humidity Ratio

C------------------------------------------------------------
C THIS SUBROUTINE WILL ITERATE TO FIND THE INLET COOLING
C COIL HUMIDITY RATIO NECESSARY FOR A PARTICULAR
C COOLING COIL LOAD.
C------------------------------------------------------------

subroutine fmdhr(xin,xload,out,ifail)
implicit none

C------------------------------------------------------------
C DESCRIPTION OF SUBROUTINES
C------------------------------------------------------------
C COIL: TRNSYS TYPE 52 COOLING COIL SUBROUTINE. THE
C SUBROUTINE WAS MODIFIED SLIGHTLY TO MORE
C ACCURATELY MODEL THE ACTUAL SYSTEM COOLING
C COIL.
C-------------------------------------------------------------
C DESCRIPTION OF VARIABLES
C------------------------------------------------------------

XIN: THESE ARE THE INPUTS REQUIRED FOR THE TRNSYS
TYPE 52 COOLING COIL

XIN(1): COOLING COIL INLET AIR TEMPERATURE (F)
XIN(2): COOLING COIL INLET AIR HUMIDITY (F)
XIN(3): MASS FLOW RATE OF AIR (LBS/HR)
XIN(4): CHILLED WATER SET TEMPERATURE (F)
XIN(5): CHILLED WATER FLOW RATE (LBS/HR)

OUT: THESE ARE THE OUTPUTS FROM THE COOLING COIL
MODEL

OUT(1-5): UNUSED
OUT(6): COIL LOAD (KBTU/HR)
OUT(7-10): UNUSED

XLOAD: DESIRED COOLING LOAD (KBTU/HR)
ALOAD: COIL LOAD AT LOW INLET HUMIDITY

RATIO (KBTU/HR)
BLOAD: COIL LOAD AT HIGH INLET HUMIDITY

RATIO (KBTU/HR)
CLOAD: COIL LOAD AT CURRENT GUESS OF

HUMIDITY RATIO (KBTU/HR)
HRA: HIGH END BOUNDARY FOR INLET HUMIDITY RATIO

(LBS WATER/LBS DRY AIR)
HRB: LOW END BOUNDARY FOR INLET HUMIDITY RATIO
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C (LBS WATER/LBS DRY AIR)
C HRC: CURRENT GUESS VALUE FOR INLET HUMIDITY RATIO
C (LBS WATER/LBS DRY AIR)
C RATIO: USED TO CALCULATE NEXT GUESS VALUE OF INLET
C HUMIDITY RATIO
C I: COUNTER
C LUW: LOGICAL UNIT TO WHICH ERROR MESSAGES
C ARE WRfITEN
C IFAIL: FLAG TO DESCRIBE OUTLET CONDITIONS
C --0; OUTLET NUMBERS ARE EXACT
C =1; OUTLET NUMBERS ARE ESTIMATED BECAUSE
C ALL LOADS ARE LESS THAN DESIRED LOAD
C =2; OUTLET NUMBERS ARE ESTIMATED BECAUSE
C ALL LOADS ARE GREATER THAN DESIRED LOAD
C-------------------------------------------------------------

real xin(5),out(10),xload,aloadbload,cload,hra
real hrbhrc,ratio
integer i,luw,ifail
common / lunit / luw

C
C BEGIN BY GUESSING A LOW INLET AIR HUMIDITY RATIO AND
C FINDING THE RESULTANT LOAD
C

hra = 0.004
xin(2) = hra
call coil(xin,out)
aload = out(6)

C
C NEXT, GUESS A HIGH INLET HUMIDITY RATIO AND FIND THE
C RESULTANT LOAD
C

hrb = 0.017
xin(2) = hrb
call coil(xin,out)
bload = out(6)

C
C IF THIS RANGE OF INLET HUMIDITY RATIOS DOES NOT CONTAIN
C THE DESIRED LOAD, THEN SET FLAGS
C

if(sign( 1.0,(xload-aload)).eq. sign(1.0,(xload-bload)))then
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C IF DESIRED LOAD IS TOO LOW, RETURN THE LOWEST LOAD FOUND
C AND SET IFAIL TO 2.
C-------------------------------------------------

if(aload.gt.xload)then
ifail =2
xin(2) = hra
call coil(xin,out)
return

C-------------------------------------------- -------------
C IF DESIRED LOAD IS TOO HIGH, RETURN HIGHEST LOAD FOUND
C AND SET IFAIL TO 1.
C-------------------------------------------------------------

else
ifail= 1
xin(2) = hrb
call coil(xin,out)
return

endif
endif

C.............................................................
C IF THE RANGE DOES INCLUDE THE DESIRED LOAD,
C BEGIN ITERATIVE SEARCH FOR CORRECT HUMIDITY RATIO

do 100 i = 1,50

C.............................................................
C ESTIMATE BETI7ER ENTERING HUMIDITY RATIO BY LINEARLY
C INTERPOLATING BETWEEN THE TWO BOUNDARY POINTS
C.............................................................

ratio = (xload-aload)/(bload-aload)
hrc = ratio*(hrb-hra) + hra

C
C FIND THE LOAD AT THE NEW HUMIDITY RATIO
C

xin(2) = hrc
call coil(xin,out)cload = out(6)

C
C IF THE COIL IS AT DESIRED LOAD, RETURN VALUES
C---------------
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if(abs(xload-cload).It.(0.01 *xload))then
return

else

C,
IF GUESS IS NOT THE DESIRED VALUE, USE IT AS A NEW BOUNDARY

(N

if(cload.gt.xload)then
hrb = hrc
bload = cload

else
hra = hrc
aload = cload

endif
endif

100 continue

C
C

IF, AFTER 50 ITERATIONS, AN APPROPRIATE HUMIDITY RATIO
HAS NOT BEEN FOUND, WRITE MESSAGE

write(luw,1002)xin(3),xin(5)

stop

1002 format(/10x,' *** error *** '/5x,' at an air flow of,
e12.3,' and a water flow of ',e12.3/5x,' the load remains',
unfound after 50 iterations.')

end

" ---------- mm m -M-- M--M m

%.I.

K.



Appendix F

Optimization Subroutine

C
C THIS SUBROUTINE FINDS THE OPTIMAL CONTROL SETTINGS
C BASED ON EXISTING SYSTEM CURVES
C-------------------------------------------------------------

subroutine findopt(iflag,xload,shr,tamb,satl ,chwtl ,nfans)
implicit none

C-------------------------------------------------------------
C DESCRIPTION OF EXTERNAL FILES
C-------------------------------------------------------------

CURVE.OUT: THIS FILE CONTAINS 3 SYSTEM CURVES, ONE FOR
EACH FAN SETIING. EACH LINE CONTAINS THE COEFFICIENT
NUMBER, 1 THRU 17, FOLLOWED BY THE COEFFICIENT VALUE.
THE CURVE IS DEFINED AS FOLLOWS:

power = c(1) + c(2)*xload + c(3)*xload**2 + c(4)*shr
+ c(5)*shr**2 + c(6)*sat + c(7)*sat**2
+ c(8)*tamb + c(9)*tamb**2 + c(10)*chwt
+ c(1 1)*chwt**2 + c(12)*xload*sat
+ c(13)*xload*chwt + c(14)*shr*sat
+ c(15)*shr*chwt + c(16)*chwt*sat
+ c(17)*tamb*chwt

WHERE power IS THE TOTAL SYSTEM POWER,
xload IS THE SYSTEM LOAD
shr IS THE SENSIBLE HEAT RATIO
sat IS THE SUPPLY AIR TEMPERATURE
tamb IS THE OUTDOOR AMBIENT TEMPERATURE
chwt IS THE CHILLED WATER SET TEMPERATURE
--- I--------- E---------------------------------

DESCRIPTION OF VARIABLES
-------------------- -----------------------

C(17):
XLOAD:
SHR:
TAMB:
DELTA:

DELTEST:

COEFFICIENTS FOR THE SYSTEM CURVE
SYSTEM COOLING LOAD (KW)
SENSIBLE HEAT RATIO
AMBIENT OUTDOOR TEMPERATURE (F)
DIFFERENCE BETWEEN THE RECOMMENDED SUPPLY

AIR AND CHILLED WATER
TEMPERATURES (F)

MINIMUM POSSIBLE DIFFERENCE BETWEEN THE
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CC
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C-

SUPPLY AIR AND CHILLED WATER
TEMPERATURES (F)

HOLDING VARIABLE FOR SUPPLY AIR TEMPERATURE
TERMS

OPTIMUM CHILLED WATER TEMPERATURE FOR
EACH OF THE THREE CONDENSER
FAN SEINGS (F)

OPTIMUM SUPPLY AIR TEMPERATURE FOR
EACH OF THE THREE CONDENSER
FAN SETTINGS (F)

OPTIMUM SYSTEM POWER FOR EACH OF THREE FAN
SETINGS (F)

FINAL OPTIMUM SUPPLY AIR TEMPERATURE (F)
FINAL OPTIMUM CHILLED WATER TEMPERATURE

SETTING (F)
FINAL OPTIMUM SYSTEM POWER (KW)
HOLDING VARIABLE FOR SYSTEM POWER TERMS
HOLDING VARIABLE
COEFFICIENTS OF CURVE DEFINING MINIMUM

DIFFERENCE BETWEEN CHILLED WATER AND
SUPPLY AIR TEMPERATURES

NULL DATA THAT MUST BE READ IN
NUMBER OF CONDENSER FANS OPERATING
COUNTERS
VARIABLE TO DETERMINE ANALYSIS TYPE

= 0; FIND OVERALL SYSTEM OPTIMUM
= 1; ONLY FINDOPTIMUM AT 2 FANS
= 2; ONLY FIND OPTIMUM AT 4 FANS
=3; ONLY FIND OPTIMUM AT 6 FANS

LOGICAL UNIT TO WHICH ERROR MESSAGES
SHOULD BE WREITEN

real c(17),xload,shr, tamb,delta,deltest
real k(4),chwt(3),satl ,chwtl ,b(2)
real sat(3),pwrpower(3),pwrl ,hold
integer junk,nfans,ij,iflag,luw
common / lunit / luw

C OPEN THE FILE CONTAINING THE SYSTEM CURVE FIT

open(unit=6,file='curve.out',status='old')
rewind(6)

C-------------------------------------------------
C DEFINE CURVE OF MINIMUM SAT/CHWT DIFFERENCE CONSTRAINT
C--------------------------------------------------

CHWT(3):

SAT(3):

POWER(3):

SATI:
CHWT1:

PWRI:
PWR:
HOLD:
B(2):

JUNK:
NFANS:
I,J:
IFLAG:

LUW:

------------ ----------------- --------------------------
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b(1) = 7.9413
b(2) = 0.044808
b(3) = -10.2753

C BEGIN LOOP FOR EACH FAN SETlING

C ---------------------------------------------------------------------------------

do 200 j=1,3

C ---------------------------------------------------------------------------------
C READ COEFFICIENTS INTO ARRAY
C-------------------------------------------------------------

do 100 i=1,17
read(6,*)junk,c(i)

100 continue

C------------ --------
C SET UP VARIABLES PERTAINING TO CURVE PARTIAL DIFFERENTIAL
C ---- m-------------m--m------------- m----m---------------- m----------------- m---------

k(1)=(-c(6)-c(12)*xload-c(14)*shr)/2.0/c(7)
k(2)=-c(16)/2.0/c(7)
k(3)=-c(10)-c(13)*xload-c(15)*shr-c(17)*tamb
k(3) = k(3)/2.0/c(1 1)
k(4) = -c(16)/2.0/c(1 1)

C
C OPTIMIZE FOR SAT
C

sat(j) = (k(1)+k(2)*k(3))/(1.0-k(2)*k(4))

C
C IF SUPPLY AIR TEMPERATURE IS UNREASONABLY HIGH, SET IT
C TO ITS MAXIMUM VALUE
C

if(sat(j).gt.60.0)then
sat(j) = 60.0

endif

C
C OPTIMIZE FOR CHWT
C

chwt(j) = k(3)+k(4)*sat(j)



95

C------
C IF CURVE RETURNS CHILLED WATER TEMP AT A LOCAL MAXIMUM,
C RATHER THAN AT A MINIMUM, PRINT A MESSAGE
C --------------------------------------------------------------------------

if(c(11).lt.0.0)then
write(luw,*)'chwt is at a MAXIMA'

endif

C-------------------------------------------------------------
C IF CURVE RETURNS SUPPLY AIR TEMPERATURE AT A LOCAL
C MAXIMUM, RATHER THAN AT A MINIMUM, PRINT A MESSAGE.
C-------------------------------------------------------------

if(c(7).lt.0.0)then
write(luw,*)'the sat is at a MAXIMA'

endif

C
C FIND ACTUAL AND CONSTRAINT SUPPLY AIR / CHILLED WATER
C TEMPERATURE DIFFERENCE
C

delta = sat(j)-chwt(j)
deltest = b(1) + b(2)*xload + b(3)*shr

C
C IF THE ACTUAL TEMPERATURE DIFFERENCE DOES NOT MEET
C THE CONSTRAINT, USE THE REVISED CURVE TO
C DETERMINE NEW CHILLED WATER TEMPERATURE
C

if(delta.lt.deltest)then
hold = c(6)+2.0*c(7)*deltest+c(10)+c(17)*tamb
hold=hold+(c( 12)+c(13))*xload+(c( 14)+c(15))*shr
hold = hold+c(16)*deltest
hold=-hold/2.0/(c(7)+c(1 1)+c(16))

chwt(j) = hold

C
C IF THE CHILLED WATER TEMPERATURE IS TOO LOW, SETC IT TO MINIMUM
C

if(chwt(j).lt. 39.O)then
chwt(j) = 39.0

endif
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C RECALCULATE OPTIMAL SUPPLY AIR TEMPERATURE

sat(j) = chwt(j) + deltest
endif

C-------------------------------------------------------------
C USE THE SYSTEM CURVE TO ESTIMATE THE SYSTEM POWER
C-------------------------------------------------------------

pwr=-c(1)+c(2)*xload+c(3)*xload**2+c(4)*shr
pwr=pwr+c(5)*shr**2+c(6)*sat(j)+c(7)*sat(j)**2
pwr=pwr+c(8)*tamb+c(9)*tamb**2+c(10)*chwto)
pwr=pwr+c(l11)*chwt(j)**2+c(12)*xload*sat(j)
pwr=-pwr+c(13)*xload*chwt(j)+c(14)*shr*sat(j)
pwr=pwr+c(15)*shr*chwt(j)+c(16)*chwt(j)*sat(j)
pwr=pwr+c(17)*tamb*chwt(j)

power(j) = pwr

200 continue

C
C DETERMINE WHETHER THE MINIMUM OVERALL POWER SETITING IS
C DESIRED, OR IF ONLY ONE PARTICULAR FAN SETFIING IS NEEDED
C

if(iflag.eq.0)then
pwr = min(power(1),power(2),power(3))

else
pwr = power(iflag)endif

C
C SET THE OUTPUT VARIABLES TO THE APPROPRIATE OPTIMUM
C SETTINGS
C

if(pwr.eq.power(1)) then
sat1 = sat(lI)
chwtl = chwt(1)
nfans = 2

endif
if(pwr.eq.power(2)) then

sati = sat(2)
chwtl = chwt(2)
nfans = 4
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endif
if(pwr.eq.power(3)) then

sat1 = sat(3)
chwtl = chwt(3)
nfans = 6

endif

return
end



Appendix G

Summary of Raw JCEM Data

This is a summarized listing of the test data from the Joint Center of Energy Management.

The readings listed here are averages, and were used to create the fan and pump

performance curves. The chiller model used individual data points rather than averages.

The first table lists the operating conditions recorded for each test. Power output for each

component is listed in the second table.
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Operating Conditions Used In JCEM Tests

Test Chilled
# Water

Temp
(F)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Supply
Air

Temp
(F)

56.2
53.2
50.4
52.9
52.9
54.2
53.1
52.3
53.2
58.0
56.5
55.4
52.9
53.8
53.8
58.9
58.9
53.7
53.6
52.7
57.8
59.7
54.5
52.3
56.2
54.8
56.5
54.5
54.0
56.5

# of
Cond.
Fans

6
6
6
4
4
6
4
6
6
4
2
2
2
2
4
2
2
4
4
4
6
6
6
2
2
4
2
4
6
2

Outside
Air

Temp
(F)

89.3
91.4
88.8
87.6
88.1
87.4
85.9
84.6
84.9
87.2
87.1
85.1
73.0
74.6
74.7
75.8
78.2
73.6
79.5
81.5
81.3
48.3
50.5
40.6
50.0
50.4
58.2
60.7
56.7
55.6

System
Cooling
Load

(KBtu)

308.6
287.4
227.0
207.9
210.8
297.0
171.3
176.3
177.2
237.0
246.0
228.0
175.0
178.1
112.6
131.4
119.6
106.0
115.8
261.2
262.0
203.4
196.1
178.9
185.0
204.6
166.7
212.5
208.9
168.8

Sensible
Heat
Ratio

0.90
0.88
0.80
0.85
0.87
0.90
0.85
0.85
0.89
0.70
0.70
0.69
0.79
0.79
0.70
0.70
0.80
0.76
0.74
0.78
0.80
1.00
0.84
0.97
0.91
0.84
0.85
0.87
0.86
0.85

39.8
40.0
40.0
40.1
40.0
40.0
40.1
44.6
45.6
45.1
45.1
44.8
44.5
45.6
49.1
44.3
49.5
44.0
43.9
40.1
45.0
49.9
45.0
43.8
45.0
44.8
44.9
44.0
43.6
42.0
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Component Powers from JCEM Tests

Test Chilled
# Water

Pump 1
(KW)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1.25
1.25
1.25
1.25
1.25
1.25
1.26
1.25
1.25
1.25
1.25
1.26
1.27
1.27
1.26
1.25
1.26
1.27
1.26
1.24
1.24
1.24
1.25
1.27
1.25
1.25
1.25
1.25
1.25
1.25

Chilled
Water
Pump 2
(KW)

2.06
1.92
1.92
0.62
0.66
1.90
0.36
1.91
1.91
1.02
1.89
1.91
1.50
1.76
1.01
0.26
0.35
0.31
0.42
1.90
1.89
1.85
1.87
1.92
0.75
1.87
0.60
1.85
1.84
0.45

Supply Return
Fan. Fan

(KW) (KW)

8.43
8.23
3.20
3.28
3.37
8.41
2.57
2.44
2.75
5.16
4.55
3.68
2.31
2.66
1.02
1.49
1.71
0.97
1.26
5.72
8.22
8.34
3.51
3.01
4.19
3.82
2.55
3.82
3.44
2.51

3.01
3.00
1.17
1.20
1.23
3.00
0.97
0.93
1.04
1.86
1.66
1.35
0.88
0.98
0.45
0.63
0.70
0.44
0.53
2.03
3.00
3.34
2.04
1.82
2.33
2.14
1.60
2.20
2.01
1.59

Condenser
Fans

(KW)

9.01
9.01
9.10
6.11
6.06
9.05
6.10
9.19
8.38
6.06
2.97
3.03
2.96
3.13
3.35
2.39
2.07
4.19
3.93
6.04
9.06
7.97
8.92
2.73
2.68
5.79
2.68
6.31
9.53
2.69

Chiller

(KW)

33.67
32.09
28.00
28.10
28.50
32.10
22.68
22.37
20.88
29.34
37.20
34.80
24.14
27.36
12.97
18.50
16.80
14.90
15.70
31.28
28.65
16.08
17.39
17.88
18.91
18.05
18.88
21.75
19.68
19.65



Appendix H

Chiller Perfomance Data

First, the general form of the chiller curve is presented, followed by the coefficients used
for each fan setting. A graph of each curve, at a load of 200 KBtu/hr, is also presented.
The coefficient of performance is calculated as the chiller load divided by the chiller
power.

Ordinarily, chiller operating curves are presented at full load conditions. However, the
chiller at the JCEM is oversized, and can not be operated at full load. The results
presented here are at a load of 200 KBtu/hr, which is one-third of the chiller capacity.
The intent of these chiller curves is to provide a chiller model that calculates chiller power
based on operating conditions at JCEM. The chiller curves used for this research do not
produce valid operating curves over the full range of chiller operating conditions, only
near the operating conditions for which test data was taken.
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Power = Co + C1 (Tmb) + C2 (T.mb)2 + C3 (Tchw) + C4 (Tchw)2 +

C5 (Load) + C6 (Load)2

Eqn Term

1.0
Tamb

(Tamb)
2

Tchwt
(Tchwt) 2

Load
(Load)2

-21.54
0.50

-1.98e-3
-0.53
5.32e-3
0.24

-2.60e-4

Number of Fans
4

64.14
-0.70
6.17e-3

-0.96
5.75e-2

-3.80e-2
3.34e-4

List of Coefficients for Each Fan Setting

6

33.46
0.70

-3.64e-3
-2.46
2.57e-2
9.18e-2

-5.05e-5
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