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ABSTRACT 

With an eye toward decreasing reliance on fossil fuels, electric utilities are increasingly 

deploying directly or supporting others to deploy more and more renewable generation assets. 

Although there are cases where renewable electricity is being generated by solar thermal systems, 

the dominant renewable energy generation technologies being used today include both 

photovoltaic (PV) and wind energy. Although the generation of electricity from renewable energy 

sources displaces the consumption of fossil fuels, it creates a number of significant challenges for 

utilities. By its very nature, the production of electricity from renewable energy generation sources 

is intermittent and often not directly correlated with the demand for electricity. Because utilities 

need to dynamically produce electricity to meet coincident demands as they occur, utilities have 

not experienced benefits of reducing their traditional generation assets as their renewable energy 

portfolios have grown. 

Most larger buildings rely on one or more electric chillers operating on-demand providing 

chilled water to meet space cooling loads instantaneously as they occur. As a building mechanical 

subsystem, chillers are, collectively, one of the higher consumers of electricity for buildings. 

Unfortunately, the cost of electricity is highest during daytime, on-peak periods when building 

thermal loads are highest which translates into higher space conditioning operating costs for the 

building owner. Furthermore, the aggregate of high electricity demands for building chilling 

systems directly impacts electric utilities. The additive effects of building chilling systems 

operating coincidently to meet space cooling loads results in the need for electric utilities to build 

and operate larger generation and transmission infrastructure to meet the peak electric loads of 

their customers as they occur. Recognizing that space conditioning systems drive the peak 

electricity demand for most utilities and the periods of peak demand persist for a very limited 
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number of hours in a year, approaches that can reduce or shift electricity demands can provide 

significant benefit for both building owners and utilities. 

Cool Thermal Energy Storage (CTES) is a proven technology that enables decoupling of 

the production of cooling from the coincident demand for cooling within a building or a group of 

buildings served by a district cooling system. CTES systems utilize either sensible (chilled water) 

or latent (ice) energy change media as a means of storing thermal energy. For decades, building 

owners have benefited from the ability of CTES to reduce electricity costs by shifting energy-

intensive chiller operation from high cost on-peak periods to low cost off-peak periods. Looking 

toward the future, CTES is a technology that offers the potential for utilities to increase their 

deployment of renewable energy production. Specifically, CTES is a technology that can bridge 

mismatches between intermittent renewable generation and the aggregate demand for electricity. 

This dissertation describes parametric studies of CTES control strategies that aim to more 

effectively utilize the generation of electricity from renewable energy resources. Specifically, the 

control strategies function to operate electricity-intensive chillers to charge thermal storage 

systems during periods when electricity from renewable generation sources is available followed 

by idling the chillers and discharging storage to meet building cooling loads during periods when 

renewable energy is not available. The strategies aim to maximize the fraction of the chiller energy 

consumption met by electricity generated from wind or solar. Additional CTES control strategies 

aim to maximize the net economic benefit of owning and operating a CTES system. Lastly, 

dynamic control strategies which utilize optimization algorithms are employed with increasingly 

variable simulation inputs. 

The analysis considers four geographic locations across the continental United States for 

both a prototypical secondary school and a large commercial office building. The building cooling 
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loads are based on the U.S. Department of Energy Commercial Reference Building Models. To 

meet the building’s primary thermal loads, the secondary school employs air-cooled chillers and a 

CTES system while the large office building employs water-cooled chillers and a CTES system. 

Both stratified chilled water and internal-melt ice CTES systems are considered. 

The parametric studies with constant parameter control strategies show a trade-off between 

maximizing the use of renewable power and minimizing life-cycle cost, but a storage system 

designed to optimize the fraction of chiller energy consumption met by renewable resources will 

always be more cost effective and better at utilizing electricity from renewable energy resources 

than a building without storage. Buildings equipped with CTES and appropriate chilling system 

control strategies, enabled an increase in renewable energy utilization that ranged from 10% to 

more than 50% compared to non-storage cases. The conditions leading to these improvements are 

generally consistent across geographic region and building type. Aggregating individual building 

results over a region and plotting the impact on the utility system load results in an enhanced 

utilization of the renewable resource with a reduction of the peak system load. Results from 

dynamic control strategies show a 24% electricity cost reduction from the constant parameter 

control strategy when using a highly variable electricity rate input. With a less variable rate, the 

electricity cost reduction for the dynamic strategy over that with constant control parameters is 

11%. These results show that implementing dynamic control results in significantly improved 

attainment of control strategy objectives (between 11% and 24% better in this case). These 

improvements are greater when the control strategy inputs are more variable as would be the case 

with intermittent renewable generation. These results suggest that widespread implementation of 

CTES systems, whether by retrofitting existing chilled water cooling systems or by incorporating 

CTES into new systems, will assist utilities in reaching their renewable penetration targets. 
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1 MOTIVATION AND OBJECTIVES 

1.1 Background Motivation 

The utility demand for electricity varies significantly on both a seasonal and diurnal basis. 

For example, Figure 1-1 shows the normalized aggregate utility system electric load for the 

Midcontinent Independent System Operator (MISO) region in 2015 (MISO 2016). Examination 

of the aggregate electric load shows that the system operates near its peak load (a normalized 

load of one) for only a few hours of the year and the minimum electric load never decreases 

below approximately 45% of the peak load. The aggregate electric demand experienced by most 

electric utilities ranges between 80-100% of the peak for a period of less than 8% of the annual 

hours of operation. The culprit end-use electric load that drives peak electric demands for many 

utilities is building air-conditioning systems. 

 

Figure 1-1. Aggregate load duration curve for MISO in 2015 (data from MISO 2016) 
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Myers, et al. (2010) evaluated the impact of the level of solar energy technology 

penetration on the aggregate load curve. For example, Figure 1-2 illustrates the aggregate electric 

utility load (demand) experienced on a typical day in Wisconsin in the spring, summer, and winter 

normalized to the all-time peak demand. Also shown is the power produced by a substantial 

penetration of PV (nominal capacity equal to 50% of the peak load) and the impact of that power 

on reducing aggregate load. In 2002, the aggregate peak utility demand in Wisconsin was 13,200 

MW. The analysis prepared by Myers, et al. showed that the deployment of 6,600 MW of nominal 

photovoltaic capacity (50% of the utility aggregate peak) only reduced the required peak electric 

demand from traditional generation sources by 4.3%. Figure 1-2 shows the utility aggregate load 

along with the electricity produced by 6,600 MW of photovoltaics during the peak demand day for 

the winter, spring, and summer seasons. The minimal reduction in peak electrical demand with 

such a large renewable energy deployment is due to the mismatch between the peak electricity 

production by solar (PV) that occurs at noon and the aggregate utility peak demand for electricity 

that occurs hours later at approximately 4 p.m. The authors of this work noted that the future 

success of large-scale penetration of photovoltaic renewables hinges on the deployment of some 

form of energy storage that can bridge the time mismatch between renewable energy generation 

supply and end-use demand. Another option that could help better manage the supply of electricity 

from renewable means would be other forms of demand-side management (e.g. load-shedding), 

but these strategies have broader economic impacts on the businesses that do take steps to reduce 

their electric demand. 
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Figure 1-2. Load curves for winter, spring, and summer for Wisconsin utilities in 2002 (adapted 

from Myers et al. 2010) 

Achieving a significant penetration of electricity production from not only photovoltaics, 

but all renewable energy resources, including wind, continues to be a high priority both on utility 

and individual building scales. From a utility perspective, ambitious legislation is driving increased 

deployment of renewable energy generation such as in California where there is a codified target 

of achieving 50% of electricity procured by retail sellers and publicly-owned utilities originating 

from renewable sources by 2030 (CEC 2016). At the building scale, sustainability-minded owners 

are deploying increasing amounts of renewable energy generation with the intent of reducing their 

carbon footprint and reliance on energy derived from fossil fuel sources. 
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In addition to renewable penetration targets, there is growing interest in approaches that 

are able to support net-zero energy performance for individual buildings. Although definitions 

vary, “net-zero buildings” aim to generate enough electric energy using renewable means to meet 

the building’s energy needs on an annual basis. Essentially every current effort toward achieving 

net-zero energy buildings relies on the building being connected to the electric utility grid. 

Furthermore, it is assumed that the utility grid will reliably bridge any mismatches between the 

available production of electricity from renewables and the building’s simultaneous energy 

demands by absorbing and utilizing any excess electricity generated by renewable means at the 

site and providing electricity when renewables are not available. This current approach to 

designing buildings with renewable generation that relies on the electric utility infrastructure as an 

infinite “sink” and “source” for electricity has a number of unintended and undesirable 

consequences when viewed on a scale broader than the building itself, e.g. at the utility level. 

The intermittent nature of renewable energy production, coupled with the electric utility 

industry’s obligation to provide a firm supply of electricity with a high degree of reliability, has 

created both operational and capital challenges. From an operations perspective, utilities have been 

challenged by the difficulty in coping with the significant grid dynamics that are created when the 

rapidly changing electricity production from renewable energy sources have to be met coincidently 

with traditional electricity generation sources. The time rate change of electricity demand and 

supply far exceed the normal variations in electric demands traditionally experienced from their 

end-use customers. Evidence of such dynamics includes utilities experiencing very high electricity 

production ramp rates and base load generation encroachment (over-generation). The California 

Independent System Operator (CAISO) region has been observing these two specific issues due to 

increased solar electricity production as illustrated by the popular “duck curve” shown in Figure 



  5 

 

 

1-3 (CAISO 2013). From a capital perspective, utilities have not appreciably benefited from any 

reductions in their traditional fixed asset generation or transmission/distribution infrastructure that 

might be expected as increasing amounts of renewable energy generation sources are deployed. 

On the contrary, utilities have had to increase investments in transmission, distribution, and grid 

controls in order to accommodate the increased renewable energy generation. Furthermore, 

utilities have not been able to forego investments in traditional generation assets due to the 

renewables’ inability to provide firm generation capacity. 

 

Figure 1-3. CAISO net load duck curve showing the over-generation risk and ramp rate for 

several years on March 31st (CAISO 2013) 

Energy storage is a crucial technology needed to effectively bridge mismatches between the 

renewable energy production and utility aggregate demand. The storage must be functional over a 

timescale of several hours to enable arbitrage or peak-shifting. Although not all are practical or 

cost-effective, various forms of electric energy storage for this timescale could be considered 
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including lithium-ion batteries, hydrogen fuel cells, compressed air energy storage, and pumped 

hydroelectric storage. Of these, pumped hydroelectric storage is the most mature and, by far, most 

widely implemented. Figure 1-4 shows that, of all existing electrical energy storage installations, 

pumped hydro accounts for more than 96% of installed energy storage (Sandia National 

Laboratories 2016). In this figure, “electro-chemical systems” include battery and hydrogen fuel 

cell systems while “electro-mechanical systems” include compressed air energy storage systems 

and flywheels. It is also noteworthy that the thermal storage shown in the figure includes only 

utility-scale, high temperature fluid storage systems used as support to power plant systems which 

store energy in a fluid for later electricity production. It does not account for distributed thermal 

storage systems. A thorough comparison of these competing storage technologies is provided in 

Section 5.6.  
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Figure 1-4. Global operational energy storage by type (thermal includes only power plant 

systems) (data from Sandia National Laboratories 2016) 

Because the utility peak electric demands in many areas of the U.S. are driven by building 

air-conditioning loads, storage in the form of thermal energy becomes an alternative that offers the 

potential of bridging mismatches in the renewable energy production and end-use demand. In this 

strategy, chillers are operated during periods of excess renewable energy production to charge a 

cool thermal energy storage (CTES) system. This stored thermal energy can then be utilized to 

meet space cooling loads, in whole or part, during periods of lower renewable energy production. 

By operating chillers to charge CTES systems during periods when renewable energy resources 

are available and then discharging to meet building air-conditioning loads during periods of 

resource unavailability, CTES offers the potential to enable a more effective utilization of 

electricity produced from renewable energy resources. My hypothesis is that, beyond electricity 

cost savings, CTES can cost-effectively enable a significantly greater penetration of renewable 

energy than currently exists today. CTES is not only a proven energy storage technology but it is 
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considerably more cost-effective compared to alternative electric energy storage technologies that 

are being considered to mitigate issues related to renewable energy deployment (see Section 5.6 

for the cost comparison). 

1.2 Objectives 

The overall objective of this work is to evaluate the potential of cool thermal energy storage 

as an enabling technology that will allow for an increased penetration of renewable energy 

generation – including understanding its benefits and limitations. In addition, the proposed 

research provides guidance on designing CTES systems, including control strategies and sizing, 

considering their impact in both a renewable energy and financial context. It also provides policy 

recommendations relating to the benefits of the CTES systems designed. The following 

summarizes the objectives set forth in this project: 

1. Identify the specific value propositions CTES provides for end-users (at an individual 

building-level and campus-level), utilities, sustainability advocates, and equipment 

manufacturers. 

2. Develop a methodology to quantify those value propositions. 

3. Quantify the magnitude of these value propositions for selected case study buildings and 

utility systems using utility data, weather data (wind and irradiance), and building load 

profile data. 

4. Relate the value propositions to the design of CTES systems (technology selection, sizing, 

and operating strategies) in order to develop a better understanding of the CTES design 

principles. 

5. Formulate a design procedure that optimizes the operational capabilities of the technology 

to enable increased penetration of PV and wind. 
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1.3 Geographic Locations for Analysis 

In order to account for the variation in building construction practices and external cooling 

loads as well as the variability of renewable energy resources, this research considers four 

geographic/climate regions. The criteria used for the selection of these regions include: 

• Diversity of weather and cooling loads 

• Diversity of wind and solar as energy resources 

• Population density (as a surrogate measure of impact potential) 

• Availability of publicly-accessible data 

Figure 1-5 illustrates the solar resource (PV) for the contiguous states (NREL 2011). The 

scale shows average daily total solar insolation (kWh/m2/day) incident on a PV panel oriented due 

south and tilted at an angle equal to the latitude of the location. It is clear that the country’s solar 

resource is heavily concentrated in the Southwest followed by the Southeast. The far Pacific 

Northwest, Upper Midwest, and Northeast have limited resource in comparison. 
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Figure 1-5. Photovoltaic solar resource map, 1998-2005 (NREL 2011) 

 

Figure 1-6 shows the annual average wind resource for the contiguous states at a height of 

260 ft (80 m) (NREL 2011). This height is consistent with the hub height of wind turbines typically 

installed (due to the effects of wind shear, other sources such as wind data collected from airports 

cannot reliably predict availability of wind resources because the measurements are made at a 

typical height of 33 ft (10 m) height). The scale in Figure 1-6 shows the wind speed and it ignores 

data below 9 mph (4 m/s) because this wind velocity threshold is below the cut-in speed for most 

wind turbines. It is important to note that wind power production increases as the cube of the wind 

speed, so small increases in velocity equate to large increases in power output. Looking at the solar 

and wind resource maps together, the Southwest and Southeast have limited wind resource 

compared to solar. The Great Plains region in the U.S. has very high wind speeds with a variety of 

solar resource. The Upper Midwest region has moderate wind resource while the Northeast has 
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limited wind and solar resource. Taking these maps into account, selecting regions which have 

significant renewable resource of solar only, wind only, both types and neither type will give the 

most variety. 

 

Figure 1-6. Wind resource map at 260 ft (80 m) (NREL 2011) 

 

Availability of utility data that are time-resolved on an hourly scale or smaller is essential 

for performing a utility grid-scale analysis. In 1999, the Federal Energy Regulatory Commission 

(FERC) suggested the voluntary creation of Independent System Operators (ISO) to “satisfy the 

requirement of providing non-discriminatory access to transmission” (FERC 2015). Along with 

maintaining grid reliability with various interconnected power supply companies, many of the 

ISOs maintain a wealth of information including: detailed generator dispatch, operating reserves, 

emissions, and other utility data. For this reason, the selection of geographic regions encompassed 

by ISOs is desirable. In addition, the majority of the US population is covered by an ISO (or a 
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similar Regional Transmission Organization), so selection of these regions also fits the criteria of 

significant population coverage.  

Figure 1-7 shows the geographic regions selected for this research, the state of Wisconsin 

(part of the Midcontinent ISO), the region covered by the California Independent System Operator 

(CAISO), the region in Texas covered by the Electric Reliability Council of Texas (ERCOT), and 

the state of New York (covered entirely by the New York Independent System Operator, NYISO). 

These four regions cover approximately one quarter of the US population and have good data 

availability. Each region also has typical weather that requires large cooling loads through at least 

the summer season. In terms of renewable resource, ERCOT has significant solar and wind 

resource, CAISO generally has significant solar and little wind, Wisconsin has little solar and 

moderate wind, and NYISO has little of both resources. These regions provide enough variety to 

be assured that control system strategies developed are effective with various levels of renewable 

resource. 
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Figure 1-7. Geographic regions selected for this research 

1.4 Building Types for Analysis 

The United States Department of Energy (USDOE) has released a set of commercial 

reference buildings intended to represent approximately two-thirds of the commercial building 

stock in the U.S. on a floor area basis. The purpose for creating these reference buildings was to 

provide baseline models for use in the ongoing development of building energy standards and 

codes. In addition, the reference building models provide a platform to assess potential impacts of 

new building-related energy technologies. The model set includes sixteen building types, each with 

envelope parameters applicable to 16 different U.S. climate zones, and each representing practices 

over a range of time periods from pre-1980, post-1980, and new construction. The weather data 

for each of the climate zones comes from Typical Meteorological Year (TMY) data for 

representative cities within those zones. Collectively, the 768 models represent hypothetical 

buildings that meet minimum requirements for energy standards and building 
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construction/operation practices applicable during the aforementioned time periods. Differences 

across the time periods are represented in the building envelope insulation, lighting levels, HVAC 

equipment types, and the HVAC equipment efficiencies. The corresponding energy standards met 

for each time period include: ASHRAE 90.1-2004 for new construction, ASHRAE 90.1-1989 for 

post-1980 construction, and a “set of requirements developed from previous standards and other 

studies of construction practices” for pre-1980 models (USDOE 2011). The 16 building types were 

chosen using data from the 2003 Commercial Buildings Energy Consumption Survey (CBECS) 

and can be found in Table 1-1 (EIA 2005). 

Since this project aims to understand the role of CTES in an energy market with the 

growing deployment of renewables, the decision was made to focus on those building types that 

utilize chilled water-based space conditioning systems. Winiarski et. al. (2006) analyzed the 

CBECS to determine the most common HVAC equipment types in use and their recommendations 

were adopted in the development of the reference buildings. Table 1-1 shows the cooling 

equipment types used for each of the sixteen buildings. 
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Table 1-1. Post-1980 and New Construction Cooling HVAC Types in the Commercial Reference 

Buildings (adapted from USDOE 2011) 

Building Type Cooling Air Distribution 

Small Office  PACU (packaged air-

conditioning unit)  

SZ CAV (single-zone constant 

air volume)  

Medium Office  PACU  MZ VAV (multi-zone variable 

air volume)  

Large Office  Chiller (2) – water cooled  MZ VAV  

Primary School  PACU  CAV  

Secondary School  Chiller – air cooled  MZ VAV  

Stand-Alone Retail  PACU  SZ CAV  

Strip Mall  PACU  SZ CAV  

Supermarket  PACU  CAV  

Quick Service Restaurant  PACU  SZ CAV  

Full Service Restaurant  PACU  SZ CAV  

Small Hotel  IRAC (individual room air 

conditioner), PACU  

SZ CAV  

Large Hotel  Chiller (2) – air cooled  FCU (fan coil unit) and VAV 

Hospital  Chiller – water cooled  CAV and VAV 

Outpatient Healthcare  PACU  CAV and VAV  

Warehouse  PACU  SZ CAV  

Midrise Apartment  PACU-SS (split system)  SZ CAV  

 

The four building models utilizing chillers include: Large Office, Secondary School, Large 

Hotel, and Hospital. Beyond the recommendations shown in Table 1-1, the Large Office and Hotel 

are modeled with two chillers in a primary-only system, the office using water-cooled chillers and 

the hotel using air-cooled chillers. Interestingly, the model for the hospital has a single 

water-cooled chiller and the Secondary School has one air-cooled chiller. This added detail for 

these systems was determined through information from the ASHRAE Standard 90.1 mechanical 

subcommittee (USDOE 2011). The USDOE document states, “[t]he number of chillers and 
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condenser type (air or water) were determined by discussions with the ASHRAE Standard 90.1 

mechanical subcommittee.”  

In selecting the specific building types to be used for this research, the design day load profile 

and the magnitude of the peak cooling load were primary considerations. Figure 1-8 depicts design 

day cooling load profiles for the four building types with chiller systems. The profiles are shown 

for each of the four geographic regions considered. The internal loads impacting these profiles are 

caused partially by human occupancy with the design day occupancy profile for each building type 

shown in Figure 1-9. The occupancy for each building is normalized by the maximum occupancy 

for that particular building type. These maximum values as well as the schedules were developed 

using the ASHRAE Advanced Energy Design Guides for the Large Hotel and Secondary School, 

the ASHRAE 90.1-2004 standard for the Large Office building, and the Green Guide for Health 

Care for the Hospital (USDOE 2011). The Secondary School peak cooling load ranges between 

185 to 410 tons (650 to 1,440 kWt) and occurs on a date which lands during the period of the year 

where school is in session. This means that although the cooling load would normally be higher in 

the July and August summer months (due to the elevated temperatures and humidity), the reduced 

occupancy and internal loads lead to reduced overall building cooling loads. 
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Figure 1-8. Commercial reference building design day cooling load profiles (data from USDOE 

2012) 
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Figure 1-9. Commercial reference building design day occupancy schedules (data from USDOE 

2012). 

Based on the chiller technology employed, the design day cooling load profile, and the 

potential aggregate impact, the Large Office and Secondary School buildings were selected for 

analysis as part of the current research effort. The Large Office has the largest cooling load which 

increases the economy of scale for a CTES system. It also has a more diverse load profile when 

compared to the other buildings that utilize chilled water for cooling. This varied cooling load 

profile provides greater opportunity for shaping the electric demand associated with the building 

by shifting cool loads; thereby, making better use of variable renewable resource profiles. Even 

though they have differing occupancy schedules, the Secondary School and Large Hotel have 

similar cooling load profiles and peak cooling load magnitudes as shown in Figure 1-8. The 

decision was made to use the Secondary School due to its potential aggregate impact by application 

of the results. As of 2012, there are 43,000 secondary schools totaling 3.1 billion square feet 
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(280 million m2) and 30,000 large hotels totaling 2.7 billion square feet (250 million m2) (EIA 

2012). Because there are a greater number of secondary schools covering a greater amount of floor 

space, a final decision was made to use the Secondary School model.  

2 MODELING 

Annual cooling system simulations provide the basis for analysis of CTES systems. Models 

are required for renewable electricity generation, building cooling loads, CTES systems, chiller 

plants, and system life-cycle costs. In order to facilitate computationally efficient CTES system 

analysis and optimization, simulation models are used that are not iterative in their calculations. In 

order to achieve this goal, some of the systems were modeled separately using relatively complex 

and computationally intensive models (e.g. solar panels, cooling towers). Reduced order models 

of these systems were developed from these results and subsequently used in the annual 

simulations for computational expediency.  

2.1  Wind Resource Data and Model 

2.1.1 Wind Resource Data  

Accurate and time-resolved wind speed data are essential for the determination of wind 

power generation potential in a particular region. Typical Meteorological Year (TMY) weather 

data have been compiled by examining many years of data and selecting the one month for each 

of the twelve calendar months which is judged to be the most typical (NREL 2008). For example, 

for the TMY3 weather data set for Los Angeles, CA, the year 2000 was judged to have the most 

typical July, so all weather data for that particular month are used in the data set. Each of the twelve 

typical months are concatenated to form a complete “typical year” weather data set. There are five 

criteria used for judging the months: global horizontal radiation, direct normal radiation, dry bulb 
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temperature, dew point temperature, and wind speed. Even though wind speed is included in the 

selection process, it is given the lowest weighting factor of the five criteria and therefore the wind 

data included in the TMY sets are not well suited for predicting the performance of wind energy 

conversion systems. Additionally, most of the wind data in the TMY data sets come from 

anemometers positioned approximately 33 ft (10 m) above the ground. Although it is possible to 

estimate the equivalent wind speed at other heights using a wind shear exponent that is a function 

of terrain, data that are gathered at the relevant heights of 164 ft (50 m) or higher are more accurate 

for determining potential wind power generation. Additionally, the TMY data set reports wind 

speed only at hourly intervals while intra-hour fluctuations can be significant. Data which are 

collected on intervals of between five to fifteen minutes would be preferable. 

Regions that have significant wind resource are likely to have tall anemometers installed to 

characterize the wind resource. Some of the data collected with these devices are made publicly 

available; for example, data from White Deer, TX, which is a town forty miles outside of 

Amarillo, TX. Wind speed data from White Deer, TX are collected at a height of 164 ft (50 m) 

and the data are time-resolved at ten minute intervals (AEI 2012).  

Figure 2-1 shows the monthly averaged wind speed for each month in 2012, separated into the 

cooling season from April to September and the off season from October to March. Because 

wind turbines typically have a cut-in wind speed of between 7 and 9 mph (3 to 4 m/s), all wind 

speeds below 7 mph (3 m/s) have been set to zero. The data for this particular location show that 

the wind speeds are slightly elevated overnight and this behavior is more prominent in the 

summer months. This behavior is also seen in the tabulated statistics shown in Table 2-1. The 

wind speeds are generally higher between the hours of 6 p.m. and 6 a.m. (when daily cooling 
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loads are lower) and the full day average column shows that the wind speeds are generally higher 

in the winter months (again, when cooling loads are lowest). The plotted mean wind speeds in  

Figure 2-1 do not show the variation in the recorded wind speeds throughout the month. 

The standard deviation column shows values ranging between 2.8 and 4.4 m/s and, since the power 

output increases as approximately the cube of the wind speed, this variation leads to changes in 

generation throughout the day that are on the same order as the monthly mean.  

Table 2-1. White Deer, TX wind speed statistics with extremes in italics 

Mean Wind 

Speed (m/s) Full Day 0:00-6:00 6:00-12:00 12:00-18:00 18:00-24:00 
Std. 

Dev 

Jan 8.68 9.44 8.18 8.73 8.37 4.33 

Feb 8.76 8.61 8.65 9.24 8.53 4.40 

Mar 8.97 10.29 8.49 8.21 8.89 3.85 

Apr 8.49 8.93 8.30 7.98 8.77 3.29 

May 8.13 9.08 7.92 7.14 8.36 3.77 

Jun 8.86 9.60 8.28 8.21 9.33 3.37 

Jul 7.51 8.32 7.29 6.46 7.99 2.79 

Aug 6.67 7.68 5.93 5.71 7.37 3.10 

Sept 6.79 7.83 6.19 5.73 7.40 3.75 

Oct 7.93 8.73 7.73 7.33 7.92 3.65 

Nov 8.01 8.89 7.86 7.11 8.18 3.71 

Dec 8.96 9.66 8.58 8.25 9.35 4.04 
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Figure 2-1. Ten-minute averaged monthly wind speed data for White Deer, TX during the 

cooling season Apr-Sep (top) and the off season Oct-March (bottom) in 2012 (AEI 2012) 
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In addition to publicly-available data, such as that for White Deer, TX, the National 

Renewable Energy Laboratory has compiled data sets for the purpose of wind power integration 

studies and estimating wind power production (NREL 2010). The data sets are entitled the “Eastern 

and Western Wind Integration Data Sets” and cover 2004, 2005, and 2006 with wind data being 

provided at five-minute intervals. The 2006 data are used for the California, Wisconsin and New 

York regions. 

2.1.2 Wind Power Generation Model 

The wind speed data are used to model wind power generation. In the range between the 

cut-in speed and the rated wind speed, the wind turbine power output increases approximately with 

the cube of the wind speed. A piecewise function is fitted to the wind power output curve (as 

shown in Figure 2-2) to predict the generated wind power as a function of wind speed. The 

piecewise function consists of the following segments: 

• From zero wind speed to the cut-in speed of just under 7 mph (3 m/s), there is no power 

output from the turbine 

• From the cut-in speed to the rated speed of 25 mph (11 m/s), a fitted third order 

polynomial is used to predict the wind power output 

• From the rated speed to the cut-out speed of 56 mph (25 m/s), the power output is 

constant at the rated power 

• Beyond the cut-out speed the power output is zero since the wind turbine must be 

stopped to avoid damage 
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Figure 2-2. Wind turbine power curve (data from NREL 2015) 
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2.2.1 Solar Resource Data 

The selection process for the TMY weather data heavily weights both global horizontal 

radiation and direct normal radiation in the selection process. This makes these data sets suitable 

for solar resource data as compared to the wind resource data. The precise locations for both the 

solar and wind resource data are displayed for each of the four geographic locations in Figure 2-3. 

The weather data used for both the solar resource and the cooling load simulations is TMY data 

and the wind speed data sources are detailed in Section 2.1.1. 
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Figure 2-3. Cooling load, solar, and wind data locations for (a) Amarillo, TX, 

(b) Los Angeles, CA, (c) Madison, WI, and (d) New York, NY 
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The TMY solar resource data does not account for any intra-hour variation in the solar 

resource. As with the wind data, it would be preferable to have solar data at five to fifteen-minute 

intervals for analyzing the CTES control systems. In order to simulate solar generation, both 

interpolation of the TMY hourly solar data to shorter time intervals and calculation of the total 

radiation on a tilted PV panel surface are required. Simple linear interpolation of solar radiation 

data can lead to positive values before sunrise and after sunset if those time periods do not fall on 

the whole hour (Duffie & Beckman 2013). As an example, if the sun rises at 6:45 a.m. and the 

hourly data shows 0 W/m2 at 6:00 and 40 W/m2 at 7:00, linear interpolation will give 10 W/m2 at 

6:15 a.m. and 20 W/m2 at 6:30 a.m. As a result, calculations for the ratio of total beam radiation 

incident on a tilted surface close to sunrise and sunset lead to asymptotically large values at these 

times due to division by the cosine of the zenith angle of ninety degrees, zero. If linear interpolation 

were not providing positive radiation values before sunrise and after sunset, this large term would 

be multiplied by zero when calculating the total radiation incident on the surface. To correct for 

these related issues, the curve for extraterrestrial radiation is used as a basis for interpolation rather 

than linearly interpolating the ground measured data (TESS 2015). 

Figure 2-4 shows five distinct components that can be included in the total radiation 

calculation. In isotropic models, only beam, isotropic diffuse from sky dome, and ground reflected 

sources are considered. More advanced, anisotropic models were developed to also take into 

account the circumsolar diffuse and diffuse from horizon (horizon brightening) radiation. The 

model used by Transient System Simulation Tool (TRNSYS) in this work is referred to as the 

HDKR model (Hay, Davies, Klucher and Reindl) and it accounts for all five radiation components 

shown in Figure 2-4 (Reindl et al. 1990). The tilted surface used in this work is fixed and oriented 

to face due south and is tilted from the horizontal at an angle equal to the latitude of the location. 
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Average monthly data for Amarillo, TX in the cooling season and off season are interpolated to 

ten-minute intervals and displayed in Figure 2-5. The resulting values for total radiation on a tilted 

surface are used to simulate intra-hour power generation for an array of PV panels. 

 

Figure 2-4. Components of total radiation on a tilted surface with an anisotropic sky (Duffie & 

Beckman 2013) 

 



  28 

 

 

 

 

Figure 2-5. TMY3 ten-minute averaged monthly total radiation for a tilted surface data for 

Amarillo, TX during the (a) cooling season and (b) off season 

 

0 6 12 18
0

200

400

600

800

1000

Hour  

M
e
a
n

 S
o

la
r 

R
a
d

ia
ti

o
n

 [
W

/m
2
]

MayMay
JunJun

JulJul
AugAug
SeptSept

Amarillo, TX Cooling Season Apr-Sept TMY3

AprApr

(a)

0 6 12 18
0

200

400

600

800

1000

Hour  

JanJan

FebFeb

MarMar

NovNov

DecDec

Amarillo, TX Off Season Oct-Mar TMY3

OctOct

M
e
a
n

 S
o

la
r 

R
a
d

ia
ti

o
n

 [
W

/m
2
]

(b)



  29 

 

 

2.2.2 Solar Power Generation Model 

The solar PV panel power output is modeled using only the incident solar radiation on the 

tilted panel (as described in Section 2.2.1), the modeled cell temperature, and manufacturer-

provided temperature coefficients that specify the change in performance with increasing cell 

temperature. The power output is simulated using TRNSYS Type 94a, photovoltaic array (TESS 

2016). The solar output at each time-step is used as an input to the CTES system model.  

The PV operating voltage, V, can either be set as a characteristic of the load or it is ideally 

varied to maximize the power output of the module. In this research, maximum power point 

tracking (MPPT) is used such that, for a given irradiance, the operating voltage is varied to 

maximize the power output. In the example shown in Figure 2-6, the red curve is the characteristic 

current-voltage relationship for a particular PV panel at the standard rating conditions (SRC). The 

SRC correspond to a solar irradiance of 1,000 W/m2 and a cell temperature of 77°F (25°C). 

Without MPPT, the operating voltage would be determined by the load and the module would 

operate at the power corresponding to this voltage, which may be significantly below its maximum 

power at these conditions. Utilizing a maximum power point tracker to operate at VM and IM gives 

the best overall array performance and maximum power trackers would certainly be installed in 

the large-scale installations studied in this work. 
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Figure 2-6. One panel current vs. voltage curve and the associated power vs. voltage curve 

showing the operation point for MPPT at one solar irradiance level 

2.3 Building and Cooling Load Models 

The Commercial Reference Building details are defined through simulation input files to 

EnergyPlus, a USDOE-sponsored building energy simulation program. The building envelope and 

internal loads are fully defined within the input file with exterior wall R-values and window 

U-factors that vary according to location. The two-story Secondary School building considered in 

this project is depicted in Figure 2-7 and the twelve-story Large Office building is depicted in 

Figure 2-8. Both buildings have a roof with the insulation entirely above deck (IEAD), but the 

Secondary School uses steel frame construction while the Large Office building uses 8 in (0.2 m) 

concrete wall construction. 
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Figure 2-7. Secondary School Commercial Reference Building depiction (USDOE 2012) 

 

Figure 2-8. Large Office Commercial Reference Building depiction (USDOE 2012) 
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In addition to the input file, a weather data file for the particular location is required. These 

weather data are used to calculate the building loads which must be met by the building’s 

mechanical systems that are the subject of this project. For typical year simulations, the weather 

data is TMY data, but for simulations covering a particular year, historical weather data is required 

to determine cooling loads. There are many sources for this historical weather data and some 

provide it in the EnergyPlus weather file format (White Box Technologies 2017). The necessity of 

aligning weather data with a typical or historical simulation is discussed in Section 5.4. In this 

project, the EnergyPlus software is used only to obtain building cooling load profiles. The nature 

of the optimization work being pursued necessitated simulation of the building’s mechanical 

systems in a MATLAB program. 

2.4 Cool Thermal Energy Storage System Models 

Although the term “thermal energy storage” potentially encompasses many types of storage 

technologies operating over various time scales, this project considers only a specific technology 

subset pertinent to building space conditioning systems that has the potential to support increased 

deployment of renewable energy resources through the shifting of electrical energy demands 

associated with meeting building cooling loads. Specifically considered in this project will be 

actively controlled, cool thermal energy storage systems utilizing either water (sensible) or ice 

(latent) technologies operating on a daily cycle. Thermal storage technologies such as aquifer, 

borehole, building mass, and other approaches intended to function in support of heating and/or 

cooling loads on daily, weekly, or seasonal timescales are not considered. In limiting the present 

analysis to building-applied CTES, the primary focus is on shifting the electricity-intensive CTES 

charge cycle to periods where solar or wind generated electricity is in excess of the building’s 

electric demand. The stored thermal energy is then subsequently utilized during periods when the 
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building’s cooling loads persist but the electricity available from solar or wind resources has 

diminished. 

A chiller plant that directly meets the facility load without storage serves as the baseline for 

comparison with the CTES system options. This system is referred to as the “no-storage” case 

throughout this work and corresponds to the simple direct-chilling system as shown schematically 

in Figure 2-9. The chiller for the non-storage system operates anytime the building has a cooling 

load. The fluid flow rate to the building’s air-handlers is variable and adjusted to maintain a chilled 

water temperature differential of 10°F (5.5°C). This differential applies to the no-storage case only. 

The installed chiller capacity is sized to meet the annual peak cooling load. The simulation model 

for the central plant consists of two equally sized chillers for both redundancy and improved 

efficiency at part-load operation. 
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Figure 2-9. No-storage system schematic 

 

2.4.1 Chilled Water CTES Model 

In a stratified chilled water CTES system, a single tank stores thermal energy by utilizing 

water’s natural tendency to stratify – warmer, less dense fluid at the top and cooler, more dense 

fluid at the bottom. The energy density for a stratified chilled water tank is approximately 

0.1 ton-hr/ft3 (12 kWh/m3) (EPRI 2008). During a charge cycle, warm water is drawn from the top 

of the tank and circulated through the chiller where it is cooled to the supply water temperature set 

point and supplied back to the bottom of the storage tank where it is made available to subsequently 

meet building loads during its discharge cycle. During a discharge cycle, the cool water is drawn 

off the bottom of the storage tank and circulated to cooling coils in the building’s air-handling 

units where the temperature increases due to heat exchange with the air being cooled before being 
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returned back to the top of the storage tank. The discharge cycle can proceed with or without chiller 

operation. 

The schematic in Figure 2-10 shows the stratified chilled water CTES system layout 

simulated in this work. The EnergyPlus building model provides the water-side cooling load to be 

met by the chiller plant and storage system, when equipped. The system is designed to operate 

with a 20°F (11°C) water-side temperature differential. This larger temperature differential is 

typical of stratified chilled water CTES systems in building applications. Compared to a no-storage 

case, it offers benefits that include reduced chilled water pumping power (on the load side), 

increased storage density, and improved stratification due to the greater differential fluid density.  

The power consumed by the building’s air handling system and circulating pumps are not 

considered as part of this work because both storage and non-storage system options are presumed 

to utilize similar inter-building cooling infrastructure. The one exception is that the fan and pump 

power for cooling tower operation are included. The variation in pumping power between 

no-storage systems and CTES systems have been assumed to be negligibly small. This assumption 

is based on the EnergyPlus simulation for the Secondary School which shows that annual pumping 

energy is less than 3% of the annual chiller energy consumption. On the air-handling side, the 

decision to neglect the circulating pumping power is a conservative one since the load-side 

temperature differential is larger for CTES systems than no-storage systems. The larger differential 

allows for reduced pumping power to meet the same cooling load. On the primary side, overall 

pumping energy consumption may be higher for CTES systems than no-storage systems since 

pumps run more frequently to charge storage without cooling loads. Thermal losses from the water 

tank and piping have been neglected and the tank is modeled as a two-zone isothermal tank. This 

means that the typical thermocline width of a few feet or less is assumed to have zero height. The 
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consequence of this assumption is a slight underestimate of the required tank volume for the capital 

cost calculations. 

 
Figure 2-10. Stratified chilled water CTES with parallel chillers schematic 

The chilled water CTES tank decouples the chillers from the building cooling loads. The 

primary loop circulating pumps connecting the chillers to the stratified chilled water tank operate 

at variable speed. Warm water drawn from the top of the water tank returns to the bottom with the 

same mass flow rate. The secondary loop pump connecting the water tank to the building cooling 

loads (air handling equipment) also operates at varying speeds so that a constant temperature rise 

can be maintained with varying cooling loads.  
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2.4.2 Ice CTES Model 

Latent CTES systems take advantage of the energy absorbed and released during the 

solidification and melting of water at a constant temperature during its phase change. Generally, 

this latent heat of solidification/melting allows ice CTES systems to yield a higher energy storage 

density compared to the sensible energy change in chilled water systems. Although other types of 

phase change materials have been used, ice is the most widely applied medium for latent CTES 

systems. Ice CTES systems have a density in the range of 0.29-0.45 ton-hr/ft3 (36-56 kWh/m3) 

compared to 0.1 ton-hr/ft3 (12 kWh/m3) for chilled water (EPRI 2008). Due to the increased energy 

storage density, ice CTES systems have a distinct advantage in building applications where space 

for siting a storage system is limited. 

The ice CTES technology employed in this work is a static ice-on-coil internal-melt system. 

A single ice CTES tank, as well as a representation of the charging and discharging processes, is 

shown in Figure 2-11. These modular ice CTES tanks are piped in parallel as needed to obtain the 

necessary integrated storage capacity for a given building mechanical system. During a charge 

cycle, low temperature glycol leaving the chillers flows through a coiled heat exchanger immersed 

in each cylindrical water-filled storage tank. Water within the tank freezes on the outside of the 

heat exchanger which will then be available to absorb heat during a subsequent discharge cycle. 

During the discharge cycle, warm glycol returning from the load circulates through the 

spiral-coiled heat exchanger and is cooled as it melts the ice stored within the tanks. 
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Figure 2-11. Ice CTES tank cutaway with charging and discharging cycle detail (EPRI 2008) 

A schematic of the ice CTES system modeled for this work is shown in Figure 2-12. The 

working fluid is a solution of 25% (by mass) ethylene glycol and water referred to simply as 

“glycol” throughout this work. The parameters defining the ice CTES system are summarized in 

Table 2-2. Two chillers in parallel provide chilled glycol at a variable mass flow rate and fixed set 

point temperature, Tchws. The maximum glycol mass flow rate, ṁ, is a constant and multiplied by 

the number of tanks piped in parallel (Trane 1990). When charging storage, the glycol supply 

temperature is set to Tice and when discharging and/or meeting the cooling loads directly, the supply 

temperature is set to Tload. Depending on the discharge mode of operation and current cooling 
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loads, the chiller system may not always be able to achieve the desired set point temperature of 

Tload and the glycol supplied to the tanks will be warmer than this temperature. 

 

 
Figure 2-12. Ice CTES system schematic while in the “Make Ice and Cool” charging operation 

mode 
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Table 2-2. Ice CTES model parameters 

Parameter Definition Value 

Tice Ice-making temperature 20°F (-6.7°C) 

Tload Secondary loop temperature to meet load 44°F (6.7°C) 

Tchws Chilled water set point temperature Set to either Tice or Tload 

Treturn Cooling load return temperature 56°F (13.3°C) 

Tstorage Ice tank glycol outlet temperature Output of model 

Tfr Freezing point of water 32°F (0°C) 

ṁice Primary loop design mass flow rate 
60 GPM per 162 ton-hr tanks 

(3.9 kg/s per 570 kWh tank) 

cgly Specific heat capacity of the glycol solution 0.90 Btu/lb-°F (3.76 kJ/kg-K) 

 

Downstream of the ice CTES tanks is the first temperature-modulating valve which 

controls the bypass of glycol around the storage tanks. Immediately following is a second 

temperature-modulating valve which controls the flow rate of the return glycol being blended to 

meet the desired secondary loop temperature, Tload, of 44°F (6.7°C). This valve is only open when 

there is a cooling load (as is the situation in Figure 2-12), otherwise the glycol returns directly to 

the chillers. When there is a demand for cooling by the building, the load-side variable speed pump 

responds to increase or decrease the glycol flow rate in order to maintain a glycol temperature 

differential of 12°F (6.7°C), equivalent to a return temperature, Treturn, of 56°F (13.3°C). Finally, 

the return glycol stream is either directed fully back to the chillers or a portion of the stream is 

blended with the storage tank output to achieve the secondary loop supply temperature with the 

remainder of the return glycol supplied to the chillers. 
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The thermal performance of the ice CTES tank will depend on its state of charge. The total 

heat transfer rate is determined using the overall heat transfer coefficient and the log mean 

temperature difference for the tank as shown in the following equation for the charging case. 

 ,

( )

ln

storage ice

ice ch charging

fr ice

fr storage

T T
Q UA

T T

T T




 
   

  (1) 

where UAcharging is a function of the current state of charge. Looking at the second term in 

Equation (1), the log mean temperature difference, it is clear that reducing the ice-making glycol 

temperature, Tice, results in an increase in the charging rate due to the increased in log mean 

temperature difference. 

The performance characteristic of the ice CTES tank used for this work is plotted in Figure 

2-13 for two different flow rates.  While a constant Tice of 20°F (-6.7°C) is used in this study, ice 

CTES systems commonly use a varying ice-making temperature which ranges from approximately 

26°F (-3.3°C) early in the charge cycle down to 20°F (-6.7°C) toward the end of the charge cycle. 

In the present analysis, a constant ice-making temperature at the lower end of this range is used 

and results in a conservative estimate of the chiller energy consumed since the chiller system 

performance is reduced at this low set point temperature. Furthermore, a charge cycle is terminated 

when the storage tank’s state-of-charge reaches 90% due to the diminishing heat transfer rate 

capability of the storage tank with the high state-of-charge. This diminishing heat transfer rate is 

attributable to the model for one ice CTES type and may not be an intrinsic feature of all ice CTES 

types. 
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Figure 2-13. CTES charging rate for a constant ice-making glycol temperature of 20°F (-6.7°C) 

with a shaded region over the unused portion of the curves (data adapted from USDOE 2010) 

For the discharging process, the heat transfer rate is calculated using the equation below. 
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  (2) 

In this equation, the maximum inlet glycol temperature to the storage tank is Treturn, 56°F (13.3°C) 

with the actual temperature ranging between 44 and 56°F (6.7 and 13.3°C) depending on the 

building load. As the building load decreases, the secondary loop flow decreases and a portion of 

the primary loop flow is used to blend down the return temperature to the chillers. Discharge rates 

as a function of the tank state of charge are shown in Figure 2-14 for a constant glycol return 
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temperature of 50°F (10°C). As the tanks discharge to approximately 10% of their capacity, there 

is a significant drop-off in discharge rate. Again, the magnitude of this drop-off may not 

necessarily represent all ice CTES types. 

 

Figure 2-14. CTES discharging rate for a constant glycol return temperature of 50°F (10°C) with 

a shaded region over the unused portion of the curves (data adapted from USDOE 2010) 

Neglecting thermal losses and equating energy balances on the charging storage tank and 

the glycol stream, a calculation of the storage tank outlet temperature, Tstorage, is possible. For the 

charging case, the energy balance is shown below. 
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Rearranging and setting Tfr to 0°C, gives the final expression used for Tstorage. 
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Similarly, for a discharging ice CTES tank, Tstorage is given by the following equation with the tank 

inlet temperature being Tload rather than Tice. 
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2.4.3 Ice CTES System Operation Modes 

The ice CTES system is capable of operating in six distinct modes. The first and simplest 

mode is “Off” with the chiller system off and the ice storage tanks neither charging nor 

discharging. The operating modes that include charging are “Make Ice and Cool” and “Make Ice.” 

The discharging modes are “Chiller and Ice” and “Ice Only.” The sixth mode, “Chiller Only,” 

neither charges nor discharges the storage tanks, but uses the chillers to directly meet building 

cooling loads while completely bypassing the storage tanks. 

“Make Ice and Cool” is displayed in Figure 2-12 where the chillers are set to Tice and all of 

the supply glycol leaving the chillers is routed first through the storage tanks. The actual glycol 

temperature leaving the chillers is based on the currently available chiller capacity (which depends 

on the chiller’s entering glycol temperature, ambient temperature conditions, and whether or not 

the chiller is operating at part load) and may be equal to or greater than Tice, but will be less than 

the freezing point of water. The tank outlet glycol temperature, Tstorage, is calculated using 

Equation (4). Because Tstorage is colder than Tload, 44°F (6.7°C), the temperature required to meet 

the cooling loads, the second temperature modulating valve blends the return glycol so that the 

temperature of the glycol supplied to meet the building cooling loads is at Tload. 



  45 

 

 

The system schematic for operation in “Make Ice” mode is shown in Figure 2-15. During 

this operating mode, all of the supply glycol leaving the chillers is routed to the storage tanks by 

the first valve and the fluid leaving the tanks is all returned to the chillers. No building cooling 

loads are met during this mode. 

 

Figure 2-15. Ice CTES system schematic while in the “Make Ice” charging operation mode 

The “Chiller and Ice” discharging mode is shown in Figure 2-16. This mode is employed 

when both the chillers and the storage discharge are required to meet the cooling loads. The chiller 

leaving glycol set point temperature is Tload, 44°F (6.7°C), but the actual leaving glycol temperature 

is based on the current chiller capacity and entering glycol temperature. If the set point is achieved, 

the operation mode changes to “Chiller Only.” Based on achieving a temperature of Tload at the 
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outlet of the first valve, some of the flow bypasses the tanks and some is routed through the storage 

tanks. 

 

Figure 2-16. Ice CTES system schematic while in the “Chiller and Ice” discharging operation 

mode 

The schematic in Figure 2-17 shows the “Ice Only” discharging operation mode. When the 

storage discharge rate is sufficient to meet the cooling load and the control strategy dictates that 

the chillers should be idle, the load is met with storage only. The glycol leaving the storage tanks, 

at the modeled value for Tstorage, is blended with glycol bypassing the storage tanks to reach the 

desired load-meeting temperature, Tload. The glycol required to meet the cooling loads goes 

through the secondary loop and the remainder bypasses the loop and mixes with the return glycol 

to go back to the storage tanks. 
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Figure 2-17. Ice CTES system schematic while in the “Ice Only” discharging operation mode 

The sixth operation mode is depicted in Figure 2-18 and involves neither charging nor 

discharging of the storage tanks. The cooling loads are met directly by the chillers in the “Chiller 

Only” operation mode. The first temperature modulating valve causes the glycol to bypass the 

storage tanks and the glycol required to meet the cooling loads goes through the secondary loop. 

The system then operates in a manner similar to the no-storage system shown in Figure 2-9. 
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Figure 2-18. Ice CTES system schematic while in the “Chiller Only” operation mode 

2.5 Chiller and Cooling Tower Models 

The two building types were selected based on the differences in their peak cooling loads. 

This difference in cooling load justifies a difference in the chiller technology employed. The 

Secondary School model utilizes air-cooled chillers with screw compressors, an example of which 

is depicted in Figure 2-19. An example of the water-cooled chiller with a centrifugal compressor 

used in the Large Office building is shown in Figure 2-20. For this research, neither chiller type 

uses a variable frequency drive (VFD) for the compressors to unload the chiller. The air-cooled 

screw chillers use a slide valve for capacity control and the water-cooled chillers use inlet guide 

vanes to vary the chiller’s capacity. Although improved part-load performance is possible with the 
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use of VFDs, decoupling of the cooling loads from chiller operation with storage allows for 

reduced operating time at low part-load ratios which results in better performance. Also, this 

research is intended to assess the impact that is possible in the near term and much of the chilling 

technology currently deployed in the field is sans VFDs on the chiller’s compressor. 

 

Figure 2-19. Screw compressor and air-cooled rotary screw chiller (photos from Trane 2016) 
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Figure 2-20. Centrifugal water-cooled chiller cutaway view (figure from Bowker 2016) 

For the water-cooled chillers, the terminal means of chiller heat rejection takes place in 

induced-draft cooling towers equipped with axial fans. The cooling tower circulating pumps are 

constant speed while the tower fans are variable speed. An example of the type of cooling tower 

modeled in this work is shown in Figure 2-21. 
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Figure 2-21. Induced-draft cooling tower with an axial fan (figure from Hamon Group 2016) 

2.5.1 Air-Cooled Chiller Model 

The air-cooled chiller performance is a function of three variables. The first variable is the 

chiller’s part-load ratio. The part-load ratio is defined as the instantaneous chiller load divided by 

its available full-load capacity at the present ambient conditions and set point. The second variable 

is the ambient dry-bulb temperature, Tdb, which impacts the chiller’s condensing pressure to 

achieve the required heat rejection. Higher ambient dry-bulb temperatures will result in greater 

condensing pressure (and temperature) and decreased chiller efficiency and capacity. The third 
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variable is the chilled water set point temperature, Tchws. A lower Tchws increases the chiller lift 

which, in turn, increases the compressor work and decreases the chiller efficiency and available 

capacity. 

The California Energy Commission (CEC) has performed an analysis of several 

manufacturers’ equipment performance curves (CEC 2012). These curves were developed for use 

in energy simulations carried out to demonstrate compliance with California energy efficiency 

standards. The only user-defined variable for these curves is the chiller performance at the rated 

condition for a chilled water set point of 44°F (6.7°C), an ambient dry-bulb temperature of 95°F 

(35°C), and full-load chiller operation (AHRI 2011). The performance is defined by the chiller’s 

coefficient of performance (COP) given in the equation below. 

 Cooling Power Output
COP

Electric Power Input
   (6) 

The rated COP of 3.0 chosen for the air-cooled chiller in this research meets the 

ASHRAE 90.1-2013 standard which went into effect on January 1, 2015 (ASHRAE 2013). The 

chiller performance curves for a chilled water set point of 44°F (6.7°C) are shown in Figure 2-22. 

The COP is negatively correlated with increasing dry-bulb temperature and positively correlated 

with increasing part-load ratio. Chiller performance at part-load ratios approaching the lower 

technical limit of 0.15 is poor. In order to operate less frequently at these poor operating efficiency 

conditions, two equally sized chillers can be run in parallel. An additional benefit and motivation 

for meeting the cooling load with two chillers is the redundancy provided. The redundancy is 

especially valuable in the case of a system which also utilizes a CTES system because the storage 

can be fully charged and used to meet load in parallel with one of the chillers if the other chiller 

needs to be brought down for maintenance. 
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Figure 2-22. Air-cooled chiller performance curves with a chilled water set point of 44°F (6.7°C) 

(data from CEC 2012) 

With two equally-sized chillers in parallel, each chiller is run at equal part-load ratios down 

to half of the overall building part-load condition. Once the building’s part-load decreases below 

0.5, only one chiller is needed to meet the overall building load and the system performance will 

then follow the performance curve of that single chiller. The performance curves for two chillers 

in parallel are shown in Figure 2-23. In this case, the part-load ratio on the x-axis is the load relative 

to the installed capacity required for the entire building. With the chillers run in parallel and a 

dry-bulb temperature of 95°F (35°C), the COP stays above 1.6 until the building part-load ratio 
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drops below 0.25. With a single chiller, the COP would drop below 1.6 at a part-load ratio of just 

under 0.5. 

 

Figure 2-23. Performance curves for parallel air-cooled chillers with a chilled water set point of 

44°F (6.7°C) (data from CEC 2012) 

The chillers operate at different chilled water set points depending on the storage 

technology and on whether or not the chillers are meeting building cooling loads directly. As 

shown in Figure 2-24, decreasing the chilled water set point reduces the chiller capacity; the 

full-load capacity at a set point of 20°F (-6.7°C) is less than 60% of the capacity at the rated set 

point of 44°F (6.7°C). This reduced capacity is relevant when sizing equipment for ice CTES 

systems since the chillers will be frequently operating at low chilled water set points. 
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Figure 2-24. Normalized full-load capacity curves (data from CEC 2012) 

Figure 2-23 displays the performance curves for chillers operating at a set point of 

44°F (6.7°C). In addition to the chiller capacity, the COP is a function of the set point. Figure 2-25 

shows the set of performance curves for chillers operating at a set point of 20°F (-6.7°C). The 

curves presented for set points of 20 and 44°F (-6.7 and 6.7°C) represent the two extremes for 

chiller operation in this research and other set points lie between these two sets of curves. 

Additional performance curves are used for the intermediate set points. 
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Figure 2-25. Performance curves for parallel air-cooled chillers with a chilled water set point of 

20°F (-6.7°C) (data from CEC 2012) 

2.5.2 Water-Cooled Chiller Model 

Similar to the air-cooled chillers, the water-cooled chillers used for the systems in this work 

are arranged in parallel. The chilling system performance is a function of the chiller system part-

load ratio, the temperature of the water entering the condenser, Tecw, and the chilled water set point 

temperature, Tchws. The entering condenser water temperature is an input rather than the ambient 

dry-bulb temperature because this chiller model does not take into account the power required to 

reject heat in the condenser. Therefore, a separate cooling tower model is required to account for 

this power consumption.  
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The one user-defined variable in the water-cooled chiller model is the COP at the standard 

rating condition (CEC 2012). The rating condition is defined as a chilled water set point of 

44°F (6.7°C), an entering condenser water temperature of 85°F (35°C), and full-load chiller 

operation (AHRI 2011). In order to meet the standards that went into effect on January 1, 2015 

from ASHRAE 90.1-2013, the rated COP is 6.3 (ASHRAE 2013). Figure 2-26 displays the parallel 

chiller system performance curves for a Tchws of 44°F (6.7°C).  

 

Figure 2-26. Performance curves for parallel water-cooled chillers with a chilled water set point 

of 44°F (6.7°C) (data from CEC 2012) 

Reducing the chilled water set point temperature has a significant impact on performance, 
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difference of 24°F (13.3°C) produces a more drastic difference in chiller performance for the 

centrifugal water-cooled chillers than for the screw air-cooled chillers. 

 

Figure 2-27. Performance curves for parallel water-cooled chillers with a chilled water set point 

of 20°F (-6.7°C) (data from CEC 2012) 

2.5.3 Cooling Tower Model 

Cooling towers provide the heat rejection means for the water-cooled chillers. The warm 

water stream coming from the chiller system comes into direct contact with an air stream and is 

cooled through both sensible and latent heat transfer. The tower modeled in this research is an 

induced-draft, counterflow design similar to that in the diagram in Figure 2-21. The ambient air is 
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pulled upward by axial fans at the top and the warm water stream is sprayed downward. There is 

a fill material in the interior of the tower which is meant to increase the water surface area that is 

in contact with the air stream. At the bottom of the tower is a sump which collects the cooled water 

to be sent back to the condensers. The model used for the cooling towers in this research is an 

effectiveness model that uses two empirical mass transfer coefficients, c and n (Braun et al. 1989).  

The cooling water flow rate per unit of refrigeration at the chiller rated conditions, V̇ref, is 

3 GPM/ton (5.4 x 10-5 m3/s-kWt). Calculation of the pumping power requirement requires the 

pressure drop for the cooling tower system in the Large Office Commercial Reference Building, 

60 ftH2O (179 kPa) (USDOE 2011). The assumed combined motor and pump efficiency, η, is 

60%. The following equation gives the pumping power as a function of the volumetric flow rate, 

V̇. 

 
3 (m /s)(179 kPa)

 (kWe)
0.6

p

Vh V
P


   (7) 

Pp is the pump electric power consumption and h is the pump head differential. The reference 

value for the cooling water flow rate per unit of refrigeration is related to the rated chiller capacity, 

Q̇c,rated, through the following relationship.  

 
3

, 3

 (m /s)
 (kWt)

 (m /s-kWt)
c rated

ref

V
Q

V
   (8) 

Solving for V̇ and plugging equation (8) into equation (7), gives the pumping power as a function 

of only known constants and the rated chiller capacity. 

 
,c rated ref

p

Q V h
P


   (9) 
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In order to use similar performance curves to those used for the air-cooled chillers, the pumping 

power is incorporated into the chiller system COP to develop a new value, COPc+p, which accounts 

for both the chiller and cooling tower pumping power. 

 
,

, ,,

( )

( )

c ratedc c
c p

refc p c rated ref c rated refc ratedc

cc c

Q PLRQ Q PLR
COP

V hP P Q V h Q V hQ PLR PLRQ

COPCOP COP  

    


 

  (10) 

where COPc is the COP for the chillers only (shown in Figure 2-26), PLR is the chiller part-load 

ratio (current load over current capacity), and Q̇c is the current chiller load. COPc+p is a function 

of only known values. 

The cooling tower fan power is variable based on the heat being rejected. The assumed 

temperature difference between the water entering and leaving the tower is 10°F (5.6°C) and the 

approach temperature, the difference between the water leaving the tower and the ambient 

wet-bulb temperature, is 7°F (3.9°C). The fan motor rating per unit of refrigeration is assumed to 

be 0.078 hp/ton (0.016 kWe/kWt) and the full-power air flow rate is 2,000 cfm/hp (1.25 m3/s-kWe) 

(Oak Ridge National Laboratory 1997, Iterson 2009). To calculate the electric fan power 

consumed, Pf, the third fan affinity law is employed in the equation below. 

 

3

,

,

a
f f full

a full

m
P P

m

 
   

 

  (11) 

where ṁa,full and Pf,full are the fan rated mass flow rate and power, respectively. The rated mass 

flow rate is obtained by multiplying the volumetric flow rate by the density of air at 70°F (21°C). 

The mass flow rate of air required to reject the heat from the chillers, ṁa, is calculated using the 

effectiveness model. Since the cooling tower is a counter-flow heat exchanger, the heat rejection, 

Q̇h, is calculated using the following equation. 
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 , ,( )h a a w i a iQ m h h    (12) 

where hw,i and ha,i are the cooling tower inlet enthalpies of the water and air streams, respectively. 

The air-side effectiveness, εa, is determined using the assumption that the Lewis number is equal 

to one (thermal and mass transfer are approximately equal). The effectiveness relationships for 

sensible heat exchangers are utilized with modifications to the definitions of the number of transfer 

units (NTU) and the capacitance rate ratio, m*. 
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where c and n are empirical mass transfer coefficients, 1.130 and -0.617 respectively for this 

research (Simpson & Sherwood 1946). The variable, Cs, is the saturation specific heat and is 

defined as the average slope of the saturation enthalpy with respect to temperature and is based on 

the water stream inlet and outlet conditions. 

 Using the assumed value for V̇ref of 5.4 x 10-5 m3/s-kWt and an approximate density of 

water of 1,000 kg/m3, an ṁw,ref of 5.4 x 10-2 kg/s-kWt is used to modify equation (8).  
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An energy balance on the chiller relates the heat rejection to the rated chiller capacity through the 

chiller COP, COPc. 

 
1

1h c

c

Q Q
COP

 
  

 
  (18) 

Combining equations (18) and (17) with equation (12) and using the definition of the part-load 

ratio, PLR, gives an equation with the air mass flow rate, ṁa, as the only unknown. 
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The cooling tower air mass flow rate, ṁa, is required to incorporate cooling tower fan power 

into the water-cooled chiller system performance. This value comes from equation (19) and can 

be used in equation (11) to calculate the fan power, Pf, required to modify the coefficient of 

performance to include the chiller, cooling tower pumping power, and cooling tower fan power. 

 

,

1 1

1 1

( )

c c
c p f

f fc p f c
f

c p c c p c ratedc p

Q Q
COP

P PP P P Q
P

COP Q COP Q PLRCOP

 

 

   
 

 

  (20) 

Equation (20) gives the modified COP for a single chiller and cooling tower cell.  

In the situation where two chillers are operating in parallel and the overall building 

part-load ratio is below 0.5, only one chiller is running. In this case, the condenser heat rejection 

can be split between the two cooling tower cells to reduce the total fan power. This strategy 

improves performance for the lower part-load ratios. The performance curves for the combined 

performance of the chillers, cooling tower pumps, and fans are shown in Figure 2-28 and Figure 

2-29 as a function of the ambient wet-bulb temperature for chilled water set point temperatures of 

44°F (6.7°C) and 20°F (-6.7°C), respectively. The overall performance is reduced compared to the 
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equivalent chiller performance curves in Figure 2-26 and Figure 2-27 because the pumping and 

fan power add to the system electric consumption while the cooling capacity remains constant.  

 

Figure 2-28. Performance curves for parallel water-cooled chiller system with a chilled water set 

point of 44°F (6.7°C) 
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Figure 2-29. Performance curves for parallel water-cooled chiller system with a chilled water set 

point of 20°F (-6.7°C) 

2.5.4 Water-Cooled Chiller System Performance in Parallel versus Series 

Because greater energy storage density is possible with larger differences between chilled 

water supply and return temperatures, chillers used in stratified chilled water CTES systems 

commonly operate under high lift conditions. A building chiller system without storage typically 

maintains a temperature difference of around 10°F (5.6°C) while a system with stratified chilled 

water storage operates around twice that temperature difference. When two or more chillers are 

available, they can be arranged to operate in parallel (as discussed above and in the preceding 

sections), series, or series-parallel combinations. For a stratified chilled water CTES system, the 

parallel arrangement is shown in Figure 2-10 and the series arrangement is shown in Figure 2-30. 

0.25 0.5 0.75 1
0

2

4

6

8

Building Part Load Ratio  

C
h

il
le

r,
 P

u
m

p
, 
a

n
d

 F
a

n
 C

O
P

Twb = 58°F (14.4°C)

68°F (20.0°C)
78°F (25.6°C)
88°F (31.1°C)

0.15



  65 

 

 

The upstream series chiller is labeled the “lag” chiller and the downstream is the “lead.” When the 

overall building part-load ratio is below 0.5, only the lead chiller operates and chills the entire 

return water to the supply water temperature set point on its own.  In this region of operation, the 

lead chiller operates in the same manner as a single chiller.  Once the building part-load ratio 

surpasses 0.5, the lag chiller starts and the chilling load is divided evenly between the two chillers. 

While both chillers are operating at reduced part-load ratios as in the parallel case, they each 

operate more efficiently due to reduced lift across each chiller. More importantly, the lag chiller is 

capable of running at a higher COP since its leaving water temperature will, necessarily, be higher 

than the supply water set point temperature the downstream chiller needs to achieve.  The light 

blue water stream connecting the lag chiller to the lead chiller in Figure 2-30 indicates an 

intermediate temperature such that each chiller is only maintaining half of the final temperature 

difference. 
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Figure 2-30. Stratified chilled water CTES with series chillers schematic 

The increase in efficiency at higher building part load ratios is shown by comparing the 

right side of Figure 2-31 with Figure 2-32. These plots show the overall chiller system performance 

including chiller compressor power, and cooling tower pump and fan power for both parallel and 

series arrangements at a chilled water set point temperature of 40°F (4.4°C) and return temperature 

of 60°F (15.6°C). The resulting improvement over parallel chiller system performance when both 

chillers are operating is between ten and fifteen percent depending on the ambient conditions and 

the part-load ratio.  
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Figure 2-31. Performance curves for parallel water-cooled chiller system with a chilled water set 

point of 40°F (4.4°C) 
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Figure 2-32. Performance curves for series water-cooled chiller system with a chilled water set 

point of 40°F (4.4°C) 

While the series chiller arrangement clearly shows improved performance for high lift 

applications, the simulation results in the following sections are presented for the parallel chiller 

arrangement. Parallel chilling is used for the stratified chilled water case to allow it to be compared 

to the ice storage system options which utilize parallel chillers. Further improvements in operating 

efficiency can be achieved in series chilling arrangements when used in chilled water storage 

system applications. 
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2.5.5 Linearized Water-Cooled Chiller Model 

While the chiller performance models presented in Sections 2.5.1 through 2.5.3 are 

well-suited for explicit parametric studies, they are not ideal for a simulation framework necessary 

for multi-variate optimization. There are two challenges presented by the using the distilled 

performance curves for the chilling system. One of the advantages of the two-chiller system is 

improved system performance at low building part-load ratios, but a chilling system with two (or 

more) chillers leads to a large discontinuity when operation switches from one chiller to two. This 

discontinuity creates problems because, as an optimization algorithm searches for a global 

minimum, it may get stuck in a local minimum as a consequence of the chiller performance curve 

discontinuity. To address this challenge, a single chiller is used in the simulations which take 

advantage of optimization algorithms. The chiller system could also be made up of multiple 

chillers which are all running at the same part load ratio if the required capacity exceeds that 

provided by a single chiller or if redundancy is required. Performance curves for a chiller system 

with a single water-cooled chiller with a set point of 40°F (4.4°C) are presented in Figure 2-33. 

The chiller performance curves, which dominate the behavior of the system performance curves 

shown, are a mix of bi-quadratic and quadratic curves. The slightly nonlinear behavior is apparent 

in the curvature of the four lines in Figure 2-33. 
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Figure 2-33. Performance curves for water-cooled chiller system with a single chiller and a 

chilled water set point of 40°F (4.4°C) 

Nonlinear chiller performance curves are the second challenge presented to optimized 

simulations. While many nonlinear programming (NLP) algorithms have been written for and 

implemented in commercial software, they are not ideal for solving CTES simulation 

optimizations. Because these algorithms must be able to accommodate a wide range of potentially 

highly nonlinear inputs, the algorithms are less efficient than those developed for linear 

programming (LP). Utilization of optimization algorithms in HVAC control systems has become 

achievable through advances in computational power. This ability was previously afforded only to 

processes with long time constants such as chemical processing and oil refining. Along with the 
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increased computational power, the algorithms must be able to reach a global minimum within the 

sub-hour timesteps required for HVAC system control.  

When setting out to solve a nonlinear optimization, one of the first recommended steps is 

to verify that the problem can’t be approximated by a problem with purely linear constraints and 

a linear objective function (Chinneck 2015). The objective function is the equation to be optimized 

(typically formulated to be minimized). Because the single-chiller performance curves in Figure 

2-33 are nearly linear, they have been approximated as the linear curves shown in Figure 2-34 for 

use in simulations utilizing optimization algorithms. While these curves introduce small 

inaccuracies in chiller system performance, they allow the use of linear programming algorithms 

which can reach the optimum operating points efficiently, accurately, and repeatably.  
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Figure 2-34. Linearized performance curves for water-cooled chiller system with a single chiller 

and a chilled water set point of 40°F (4.4°C) 

2.6 Cost Data and Model 

Life-cycle cost calculations are performed for a twenty-year period and include both capital 

and operating costs. The capital costs include installed wind turbines, PV panels, chiller systems, 

CTES systems, and their related equipment. The operating costs include the electricity costs and 

the details for the calculation of the operating costs are presented in Section 5.2. A present value 

is calculated for the twenty-year period of operating costs. Not considered in the cost calculations 

are maintenance costs associated with the major capital components. 
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2.6.1 Time-of-Use Electricity Cost Data 

For comparison purposes, the same time-of-use electricity rate structure is used for each of 

the geographic locations. The rate structure originates from the North Texas CoServ utility tariff 

in effect in mid-2015 (CoServ 2015). Although most commercial building utility rates include a 

separate on-peak demand charge, the CoServ rate structure is based solely on energy charges with 

no separate demand component. The on-peak rate is 16.5 ¢/kWh and the off-peak rate is 

7.2 ¢/kWh. The on-peak rate is more than double the off-peak rate which encourages end-use 

customers to avoid electricity consumption during the on-peak window. As illustrated in Figure 

2-35, the on-peak period extends from 3 p.m. to 8 p.m. during the summer months and there is an 

additional on-peak period added from 6 a.m. to 8 a.m. during the winter months.  
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Figure 2-35. Time-of-use energy charges used for all locations (CoServ 2015) 

2.6.2 Time-of-Use with Demand Charges Electricity Cost Data 

In order to evaluate the impact of the inclusion of demand charges, a second rate structure, 

in addition to the one in Figure 2-35, is used in the simulation of the Large Office building 
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it has become a popular combination in New York City where both space constraints limit the 

installation of a large stratified chilled water CTES tank and commercial buildings are subject to 

utility rate structures that have a significant electricity demand charge component. The rate 

structure for this comparative example is the Consolidated Edison (Con Edison) General Large 
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(Con Edison 2017b). The rate is comprised of four separate components, two energy charges and 

two demand charges. The energy charge for delivery is 0.79 ¢/kWh year-round and is levied by 

Con Edison. The energy charge for supply can be charged by one of many energy services 

companies chosen by the consumer, but this research uses the Con Edison rate. This rate is 

5.06 ¢/kWh during the on-peak hours of 8 a.m. to 10 p.m. Monday through Friday and 4.35 ¢/kWh 

at all other times (Con Edison 2017a). Figure 2-36 shows the sum of the two energy charges as a 

function of the time of day using the same scale as Figure 2-35, which shows the rate which 

considers energy charges only. Notice that the energy charges are significantly lower since the 

majority of the monthly charge comes from demand charges.  
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Figure 2-36. Time-of-use energy charges used with demand charges for New York City 

Demand charges are based on the facility’s peak electric demand. The rate used in this 

research has a delivery component charged by Con Edison and a capacity component charged by 

the New York Independent System Operator (NYISO). The Con Edison rate is based on the peak 

electric demand in each month and amounts to $39.64/kW for June through September and 

$16.44/kW for all other months (Con Edison 2017b). The NYISO component uses the same peak 

demand value for a one-year period that comes from the facility demand coinciding with the peak 

hour for the entire NYISO system. This peak demand is charged at a rate of $10.99/kW for May 

through October and $3.50/kW for all other months (NYSIO 2017). The total demand charge is 

shown as a function of the month of the year in Figure 2-37. Each portion of the demand charge is 
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applied to a different peak demand value except for the month in which the NYISO system 

experiences peak demand. 

 

Figure 2-37. Both demand charge components for New York City 

2.6.3 Day-Ahead and Real-Time Electricity Cost Data 

The electricity rates provided in the previous sections are fully specified throughout the 

year and formulating a control strategy to reduce electricity costs around these rates is 

straightforward. The chiller system is idled during on-peak rate periods as much as possible. These 

rate structures encourage end-customers to reduce electricity consumption when the utilities 
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typically experience their peak demand. Because the definition of the peak time period set by the 

rate structure is very coarse, there are occasions during the on-peak rate periods when overall 

demand is low and vice versa.  

There are other dynamic rate structures in use which vary hourly in response to events 

affecting both demand and supply. The simple graphic in Figure 2-38 shows various dynamic 

pricing rate structures and their response to a critical event like a heat wave that causes an extreme 

peak in demand. The plots also show how these various rate structures vary in comparison to a 

flat-rate structure. The first structure shown is real-time pricing and this encompasses both the 

day-ahead and real-time electricity prices used in this research. Day-ahead pricing is actually used 

to bill end customers in some areas, but real-time prices are not known ahead of when they occur 

and are not used for billing end customers. Real-time pricing fluctuates hourly based on the cost 

of generation under the current conditions while day-ahead pricing is a prediction of this hourly 

price fluctuation as the name implies. During the off-peak periods, the real-time rates are lower 

than a flat rate, but they respond to a peak event in the early evening by raising rates accordingly. 

The second structure displayed is a time-of-use structure which was presented in the previous 

sections. This structure is dynamic in that it has different rates for different times of the day, but it 

has no mechanism for responding to the critical event. The last two rate structures, critical peak 

pricing and critical peak rebate, are similar in that they occasionally adjust prices when a critical 

event occurs. Unlike the hourly response to grid conditions for real-time and day-ahead pricing, 

these structures respond to critical events only on certain days of the year. For critical peak pricing, 

the standard rate is lower than it would be for a typical flat-rate structure, but the price increases 

significantly during a critical peak pricing event. The critical peak rebate approach is similar except 

that it is more customer-friendly in that a rebate is given during the peak event depending on the 
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level of load reduction compared to what was expected from the end-customer. The two critical 

peak structures are similar to the day-ahead structure in that they provide end-customers with 

information about the peak event well before it actually occurs. 
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Figure 2-38. Dynamic pricing rate structures (Spiller 2015) 
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The day-ahead and real-time rates used in this research are for Con Edison in New York 

for the full year of 2016. The day-ahead rates are defined under Rider M – Day-Ahead Hourly 

Rates and according to General Rule 25.1, the Market Supply Charge applicable to the hourly 

energy usage is the NYISO price multiplied by a factor of 1.063 to account for losses of 5.9% (Con 

Edison 2018; Con Edison 2017c). The NYISO price used is the day-ahead Locational Based 

Marginal Price (LBMP) for Zone J which covers New York City. These energy charges make up 

only a portion of the overall electricity bill, but because these rates are used in a comparison 

between CTES systems subject to day-ahead and real-time rate structures, the remaining portions 

of the overall bill are assumed to be consistent.  

NYISO publishes current and historical rates for day-ahead and real-time rates (NYISO 

2017b). The NYISO real-time rates are not used to charge end customers, but the same loss factor 

is used here to account for loses. An example of these rates for a week in early September is plotted 

in Figure 2-39. The day-ahead rates exhibit smaller variations throughout the week and there are 

several periods when the real-time rate far exceeds the day-ahead rate. There are also periods when 

the day-ahead rate is higher than the real-time rate and the annual mean is actually even for both 

rates at 3.14 ¢/kWh for 2016. Even though it is clear that the real-time rate data fluctuates 

significantly, there are also notable fluctuations in the day-ahead rate. For instance, the peak rate 

on the fifth day is nearly 10 ¢/kWh while on the seventh day it peaks at about 4 ¢/kWh. 
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Figure 2-39. Early September day-ahead and real-time Con Edison electricity rates (data from 

NYISO 2017b) 

While the real-time rate is not actually charged to end-customers, it is included in this 

research to show the benefits of particular control strategies when used in conjunction with 

increasingly uncertain variable inputs. The prevalence of day-ahead and other dynamic pricing 

structures is important to the research presented here. Installation of smart electricity metering 

devices is required for any of the structures presented here since they allow for determination of 

the time-of-day the electricity was consumed. Beginning in 2013, the Energy Information 

Administration (EIA) includes information about customers enrolled in dynamic pricing programs 

in their annual survey of utilities (EIA 2017a). Looking at this data for the years 2013 and 2016, 

620 utilities reported some customers enrolled in dynamic pricing in 2013 and 646 in 2016. In both 
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years, this amounts to approximately 20% of the utilities which responded. The number of end-

customers enrolled in these programs increased by 33% from 6 million to 8 million. A significant 

portion of this increase was in the residential sector, but the number of utilities offering day-ahead 

rates to commercial and industrial customers increased by 29% from 55 to 71. While this is not a 

large number of utilities compared to the thousands of respondents, the general trends are 

encouraging. 

2.6.4 Chiller and Cooling Tower Cost Data 

RSMeans Mechanical Cost Data provide the basis for estimating the installed chiller cost 

including profit and overhead (RSMeans 2015). The air-cooled chillers modeled in this work use 

screw compressors and the RSMeans chiller cost includes the integrated condenser. The costs are 

tabulated as a function of chiller capacity and linear regression is used to calculate costs between 

these values. The costs range linearly from $85,000 for a 100-ton (350 kWt) chiller to $180,000 

for a 250-ton (880 kWt) chiller. Because all of the air-cooled chiller systems modeled use two 

chillers in parallel, the individual installed chiller cost is multiplied by two to get the total chiller 

capital cost. 

The water-cooled chillers modeled use centrifugal compressors. The condensers are 

induced-draft cooling towers with axial fans and their costs are accounted for separately. The 

RSMeans linear regression for the water-cooled chiller data gives costs that range linearly from 

$160,000 for a 300-ton (1,050 kWt) chiller to $490,000 for a 1,000-ton (3,500 kWt) chiller. These 

costs are in addition to the cooling tower costs. Because the cooling towers are rated according to 

the rated heat rejected rather than the heat absorbed, the rated chiller COP is used to determine the 

required cooling tower capacity based on the rated chiller capacity. The cooling tower costs range 

linearly from $45,000 for a 300-ton (1,050 kWt) chiller to $145,000 for a 1,000-ton (3,500 kWt) 
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chiller. The water-cooled systems modeled in this research all have two parallel chillers with one 

cooling tower for each chiller, so the chiller and cooling tower cost are each multiplied by two to 

get the total installed chiller plant cost.  

2.6.5 CTES Equipment Cost Data 

General cost data for thermal storage systems is not available through RSMeans or similar 

databases. For the stratified chilled water systems, cost data were obtained from a consulting firm 

that specializes in CTES systems as well as a manufacturer of CTES tanks (J. Andrepont, personal 

communication, May 3, 2016 and G. Frankenfield, personal communication, January 25, 2017). 

For ice CTES systems, cost data were obtained from a manufacturer of internal melt systems 

(M. MacCracken, personal communication, July 8, 2016). A summary of the costs of each of these 

types of systems is shown in Figure 2-40. For stratified chilled water systems, the modeled cost is 

shown as a solid line within a shaded cost range. Because these tanks are erected in the field, 

several location-specific factors affect a particular tank’s cost so that it might fall anywhere within 

this range. These factors include site soil conditions, local labor rates, the tank height-to-diameter 

ratio, and aesthetic enhancements. In addition to these factors, system parameters such as the 

chilled water temperature difference and the required charge and discharge rates have a significant 

cost impact. While Figure 2-40 extends to a storage capacity of 20,000 ton-hr (70,300 kWh), 

installations are commonly larger than this size and the cost per unit capacity continues to decline 

for these larger sizes. At a storage capacity of approximately 6,500 ton-hr (23,000 kWh), the 

modeled costs are equivalent. This capacity is equivalent to approximately forty ice CTES tanks 

(at 162 ton-hr (570 kWh) each) or a stratified chilled water tank with a volume of 0.5 Mgal (1,900 

m3). Beyond this intersection point, stratified chilled water systems benefit from the increasing 

economy of scale. The hatched regions in Figure 2-40 represent the approximate minimum storage 
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capacity range for the Secondary School and the Large Office building. The Secondary School is 

well within the range in which ice CTES is less expensive, but the Large Office building range 

includes the intersection of the two cost curves. The least expensive storage technology varies by 

geographic location for the Large Office building. 

 

Figure 2-40. CTES cost data and storage capacity ranges 

2.6.6 Photovoltaic and Wind Turbine Cost Data 

The installed costs for photovoltaic systems have been rapidly declining over the past two 

decades. The United States Department of Energy publishes an annual overview of the pricing 

trends which tracks the most current pricing (USDOE 2015). The pricing includes materials, labor, 
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overhead, profit, and regulatory costs up to the point of grid tie-in. A breakdown that separates the 

cost of the module itself from the inverter and from the other costs is given. This breakdown is 

important for this research because the life cycle considered here is twenty years and the 

approximate lifetime of a PV inverter is ten years. Included in the capital cost for the photovoltaic 

systems is one inverter replacement. The prices are stated in units of $/WDC with piecewise 

economies of scale provided through the use of different sectors. The residential sector pricing 

uses a system size of 5 kWe, the commercial sector uses a system size of around 200 kWe, and the 

utility sector uses a system size of 100 MW. For this research, the commercial sector pricing best 

fits the scale of the PV systems considered and the first quarter 2015 pricing is $2.17/WDC. This 

price includes $0.14/WDC for the inverter, so after consideration of one inverter replacement, the 

final cost is $2.31/WDC. This cost is a conservative estimate with respect to the inverter 

replacement because the cost will be incurred years into the future and the inverter cost may 

continue to decline. 

The USDOE also publishes an annual Wind Technologies Market Report which gives an 

overview of wind power installations, technologies, and costs (USDOE 2016). The wind turbine 

costs have also been declining in the last several years, but at a slower rate than the PV costs. The 

approximate average installed wind turbine cost reported for 2015 is $1.57/W. The same 

assumption regarding one inverter replacement is made for the wind energy generation option, 

adding a one-time cost of $0.14/W. The total cost considered for the wind turbine farm is then 

$1.71/W. 
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2.6.7 Present Value Cost Model 

A present worth factor is used to calculate the present worth of the annual electricity costs 

(Duffie & Beckman 2013). Using an assumed inflation rate, i, an assumed market discount rate, d, 

and a number of years, N, the present worth factor is given by the following equation. 
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This equation assumes that the inflation rate and the discount rate are not the same. For this 

research, the assumed inflation rate, i, is 5% and the discount rate, d, is 8%. These inflation and 

discount rates are based on the rounded averages of the Consumer Price Index inflation rate and 

the 10-Year Treasury Constant Maturity Rate between 1975 and 2007 (Coin News 2015, Federal 

Reserve Bank of St. Louis 2017). Using N of twenty years, the present worth factor is 14.4. This 

factor is multiplied by the electricity cost for one year to give the present value to be added to the 

capital costs. The sum is the twenty-year life-cycle cost. 

3 INITIAL CONTROL STRATEGIES 

The initial control strategies employed in this research are separated into two categories. 

The first is explicitly designed to meet the project objectives and utilize renewable power to meet 

the chiller electric load. These control strategies are termed “Renewable Control” strategies 

throughout this dissertation. The second category aims to reduce the electricity cost associated 

with the chiller electricity consumption. These control strategies are called “Cost Control” 

strategies in this dissertation. 
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3.1 Variable Parameters 

Decision points in each of the initial control strategies depend on the values of several 

system parameters. Several of these parameters are allowed to vary in order to approach optimum 

operating conditions with respect to the project objectives. These variable parameters are tabulated 

in Table 3-1. 

Table 3-1. Initial control strategy variable system parameters 

Parameter Values 

Control strategy Renewable Control or Cost Control 

CTES technology Stratified chilled water or ice 

Renewable resource Wind or solar 

Installed renewable capacity Multiples of the no-storage full-load chiller power 

Storage daily recharge hour Midnight to 11 p.m. 

Minimum chiller plant part-load ratio 0.15 to 1 

CTES capacity Multiples of the minimum storage capacity 

Chiller capacity Multiples of the minimum chiller capacity 

 

3.1.1 Baseline Parameter Sizing 

The baseline or minimum-sized renewable generation, chiller, and CTES equipment vary 

by geographic location. To ensure that simulation results are comparable from region-to-region, 

the equipment sizes are normalized by appropriate values specific to the location. The rated 

capacity of the wind turbines and/or solar PV system is a multiple of the full-load chiller power 

for the no-storage system. This value is the peak cooling load for the building (in the particular 

geographic location) divided by the coefficient of performance at the ambient conditions during 
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the peak period. For the Secondary School, these values range from 380 kWe in California to 580 

kWe in New York. For the Large Office building, the values range from 1,000 kWe in California 

to 1,300 kWe in New York.  

The baseline capacity for the chillers and the thermal storage system assume a partial 

storage strategy. This strategy is designed to level the chiller load on the design day and represents 

the minimum possible equipment size while still meeting the cooling loads. The Texas Secondary 

School cooling load and chiller output for the partial storage strategy are shown in Figure 3-1 for 

stratified chilled water CTES. The storage tank is charged when the facility’s cooling load is less 

than the chiller capacity and when the building cooling load exceeds the chiller capacity, the tank 

discharges to meet the load in parallel with the chiller. Because every day of the year other than 

the design day has a lower integrated cooling load, the chiller can be cycled off during all or a 

portion of the peak period on most days. When larger chillers are selected, they can be cycled off 

even during the design day. The chiller capacity shown in blue in Figure 3-1 is calculated by 

dividing the design day integrated cooling load by 24 hours. The storage tank capacity is the 

integrated area of the portion of the cooling load which lies above the chiller output. 
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Figure 3-1. Chilled water partial storage strategy on the design day for the Secondary School 

The calculations for the ice CTES systems are similar, but the reduced capacity of the 

chiller when operating at low chilled water set points must be taken into account. During the 

off-peak hours when the ice CTES system is charging, the chiller leaving glycol set point 

temperature is reduced in accordance with the performance curves provided in Figure 2-24. To 

compensate for the reduced chiller capacity at lower leaving glycol temperatures, an increase in 

rated chiller capacity between ten and twenty percent is required depending on the geographic 

location. 

3.2 Renewable Control Strategies 

The Renewable Control strategies run the chillers as long as (1) there is sufficient 

renewable power available and (2) there is a need for the cooling that is produced (either to directly 

0

50

100

150

200

250

300

350

400

450

T
o

n
s 

o
f 

C
o

o
li

n
g

Design Day Chilled Water Load (tons) Chiller Output (tons)



  91 

 

 

meet a building load or to charge storage). The varying parameters for these strategies are tabulated 

in Table 3-1. The first parameter listed in the table, control strategy, is set to Renewable Control 

for these strategies. The minimum storage and chiller capacities are calculated based on the partial 

storage strategy described in Section 3.1.1. There are two separate control strategies, one for each 

storage technology. 

3.2.1 Chilled Water CTES Renewable Control Strategy 

The flow chart in Figure 3-2 details the control decisions made for Renewable Control with 

a stratified chilled water CTES system. This strategy assumes that if sufficient capacity is available 

in the tank, the diffusers are designed such that any cooling load can be met by storage alone. The 

time-step used in the simulations in this research is 10 minutes. A short time-step is desired in 

order to accurately capture the intermittent nature of the wind and solar resources. 

The chiller control strategies all operate with a constraint that requires the storage tank to 

be fully charged once in each 24-hour period. To determine whether or not the chillers should run 

for the current time-step, the first decision point is to determine whether or not the tank can be 

charged by the variable defined as “recharge hour” if the chillers were to remain off. This decision 

requires knowledge of the cooling load for the remainder of the current day. If the chillers must 

operate to recharge the tank by the beginning of the next day, they will run at full-load capacity 

regardless of the current level of renewable power available. 

If the storage system can be recharged by the beginning of the next day without the chillers 

operating at full load, the next step is to decide whether the renewable power level available is 

sufficient to run the chillers. The renewable power available must be sufficient to run the chiller 

system at the part-load ratio specified by a user-defined parameter. If the available renewable 

power is sufficient, the next decision point is to evaluate the storage system’s state-of-charge. If 
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there is available storage tank capacity, the chillers are engaged only up to the system part-load 

ratio which can be met by current renewable power generation. If there are cooling loads present, 

the cooling loads are met by the chillers. If the cooling loads are in excess of the available chiller 

capacity, the CTES system is discharged in parallel with the operating chillers to meet the building 

loads. 

If the tank is already fully charged, there must be building cooling loads for the chiller to 

operate. If the chillers operate, they are limited to the maximum part-load ratio that can be met by 

the minimum of the current renewable power generation available or the current building cooling 

load. 
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Figure 3-2. Stratified chilled water CTES flow chart for the Renewable Control strategy with 

design parameters highlighted 

  

Should the chillers run for the 

current time step?

Can the 

tank be recharged 

by the recharge hour 

if the chillers 

are off?

Is the 

tank fully 

charged?

Chillers are on up to 

current renewable power 

to charge tank and meet 

any cooling load

Yes

Chillers are on full 

load until the 

recharge hour

No

Chillers are offNo

Is there 

cooling load to be 

met?

No

Chillers are on up to the 

minimum of the renewable 

power or the cooling load, 

any additional load met by 

storage

Chillers are off

Yes

Yes

Yes

Is

renewable
 power sufficient to meet 

X% of the current full 
load chiller 
capacity?

Design Parameters (bold and italicized):

• Storage recharge hour [-]

• Minimum chiller part load ratio, X [%]

• Renewable power (installed capacity is a 

multiple of the no-storage full load power) [kW]

No



  94 

 

 

This control strategy is demonstrated through operation over a three-day period as shown 

in Figure 3-3. The top plot shows the cooling load for the Secondary School located in Texas on 

the left y-axis with the storage tank charge on the right axis. The capacity of the partial storage 

CTES system is 1,500 ton-hr (5,300 kWh). The bottom plot shows the intermittent wind power as 

well as the chiller power (a function of the Renewable Control strategy decisions). Based on sizing 

for a partial storage strategy and the rated chiller COP, the full-load chiller power requires 

250 kWe of electricity. The maximum wind output for this example is set at 1,000 kWe. The time 

of day when storage must be recharged (the storage recharge hour) is 5 a.m. The x-axis on the 

bottom plot indicates the beginning of each of the three days. 

For this particular example three-day period, the integrated daily building cooling load gets 

progressively greater from the first through the third day while the integrated available wind power 

shows the opposite trend over these three days. These trends make this particular three-day period 

ideal for illustrating each aspect of the control system behavior. 



  95 

 

 

 

Figure 3-3. Renewable Control strategy for the Secondary School cooling load, tank charge 

(top), wind, and chiller power (bottom) 

Figure 3-4 shows a time period during the third day that exhibits the default condition in 

the Renewable Control strategy. This condition dictates that the chillers run at full load regardless 

of the current level of available renewable power because the storage system must be fully 

recharged by the beginning of the next day (5 a.m.). Beginning around hour 59, the wind power 

dips below the chiller’s full-load power requirement and the control system compares the 

remaining cooling load for the day to the available chiller capacity operating at full load. With a 
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large integrated cooling load remaining, the tank cannot be recharged by the beginning of the next 

day without running the chillers at full load. Reaching this phase of the control strategy means that 

there is no need to further evaluate decisions on the control strategy during the time-steps 

remaining before the beginning of the next cooling day – the chiller must remain on to fully 

recharge the storage system.
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Figure 3-4. Renewable Control demonstration of default condition with low renewable resource and high cooling load 
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At hour 32, during the period of highest cooling load on the second day, the storage system 

begins to discharge as highlighted in Figure 3-5. At every time-step during this period, the wind 

power is sufficient to meet the chiller capacity at either full-load or part-load above the minimum 

chiller system part-load ratio. The next step in the control strategy flow chart is to determine 

whether the storage tank is fully charged or has available capacity. In the instance shown, the 

storage system has available capacity since the charge is below the 1,500 ton-hr level which would 

indicate a full charge. The chillers then operate up to the available wind power and the dip 

occurring at approximately hour 34 shows that the chiller operates at part load conditions during 

this time.
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Figure 3-5. Renewable Control demonstration of high renewable power with tank capacity available
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If wind power is available, but the storage system is already fully charged, the last option 

for utilizing the resource is to directly meet the cooling load. Figure 3-6 shows a time span where 

this is the case during the first day of the demonstrated period. At the very beginning of the cooling 

day, the wind resource is strong, the storage tank is fully charged, and there is a small cooling load 

to be met. The chillers run to directly meet the cooling load. Once the tank begins discharging at 

the end of this time period, this portion of the control strategy is no longer in effect. 
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Figure 3-6. Renewable Control demonstration of high renewable power with cooling load to be met 
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3.2.2 Ice CTES Renewable Control Strategy 

The Renewable Control strategy for ice CTES is similar to that for stratified chilled water, 

but accounting for the charging and discharging rate characteristics of the storage technology. As 

noted previously, these charge and discharge rates are a function of the storage state-of-charge. 

During each time-step where chiller capacity is available to charge storage or meet cooling loads 

by discharging storage, a second decision is required to evaluate and account for the charge or 

discharge rate of the CTES system. The control decisions also affect the chiller temperature set 

point, Tchws, whereas this temperature is always constant at 40°F (4.4°C) for chilled water CTES. 

The control strategy flowchart for Renewable Control with ice CTES is shown in Figure 3-7. 

The first two control decisions, making sure storage is recharged by the beginning of the 

day and determining whether there is sufficient renewable power to meet the minimum chiller 

part-load ratio, are the same as those for the chilled water CTES technology. The next decision is 

whether or not there is a building cooling load to be met. If the renewable power level is low and 

there is no building cooling load to be met, the chillers are idled. If there is building cooling load, 

the storage discharge rate is evaluated. If the storage discharge rate is sufficient to meet the 

building cooling loads, the chillers are off and the use of non-renewable power is avoided. This 

operating state is described as the “Ice Only” mode (see Figure 2-17). On the other hand, if the 

storage discharge rate cannot fully meet the cooling load, then storage is discharged at its 

maximum rate and the remainder of the cooling load is met by the chillers. This mode is the 

“Chiller and Ice” mode illustrated in Figure 2-16. 

If there is sufficient renewable power to meet the chiller system minimum part-load ratio 

and no cooling load, the next decision in the third row of the flow chart involves evaluating the 

storage system’s state-of-charge. If storage is fully charged, the chillers are in the “Off” mode (as 
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described in Section 2.4.3) and the available renewable power goes unconsumed by the chillers. If 

storage is not fully charged, the operation mode transitions to “Make Ice” as depicted in Figure 

2-15. The current storage charge rate is evaluated to determine whether the CTES system can 

accept the heat transfer rate provided by the chillers. If the maximum charge rate is less than the 

current chiller capacity at the renewable power level, the chillers run at the storage charge rate. If 

not, then the chillers run at the current chiller capacity and charge the storage at a rate less than its 

maximum. 

With sufficient renewable power available to meet the chiller system’s part-load ratio as 

well as cooling load to be met, the magnitude of the cooling load is evaluated in the fourth row of 

the control flow chart. If the cooling load is not greater than the current chiller capacity, then the 

storage state of charge is evaluated. If storage is fully charged, the chillers run to meet the building 

cooling load directly to maximize the utilization of available renewable power. This “Chiller Only” 

mode is shown in Figure 2-18. If the storage system is not fully charged, the maximum storage 

charge rate is compared to the difference between the current chiller capacity and the cooling load. 

This mode is the “Make Ice and Cool” mode illustrated in Figure 2-12. If the charge rate is less 

than the current chiller capacity minus the cooling load, the chillers run only at the storage rate 

plus the current cooling load. Some of the available renewable power remains unused by the 

chillers. If the charge rate is greater than or equal to the current chiller capacity minus the cooling 

load, the chillers run at that capacity to meet the cooling load and the remaining chiller capacity is 

used to charge storage. 
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Figure 3-7. Ice CTES flow chart for the Renewable Control strategy with design parameters 

highlighted 
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3.3 Cost Control Strategies 

The Cost Control strategies run the chillers as long as the electricity rates are currently off-

peak and there is a need for the cooling that is produced (either to directly meet load or to charge 

storage). These strategies are intended to approximate a typical operating strategy for current 

CTES systems in the field. The varying parameters for these strategies are tabulated in Table 3-1. 

Although the level of renewable power is not a factor in decisions for this control strategy, the 

renewable power level is still varied to provide a point of comparison for renewable utilization 

among no-storage, Renewable Control, and Cost Control systems. The first parameter listed in the 

table, control strategy, is set to Cost Control for these strategies. The minimum storage and chiller 

capacities are calculated based on the partial storage strategy described in Section 3.1.1. As with 

Renewable Control, there are two separate control strategies, one for each storage technology. 

3.3.1 Chilled Water CTES Cost Control Strategy 

The Cost Control strategy flow chart for stratified chilled water CTES is displayed in 

Figure 3-8. The only design parameter used for making control decisions is the storage recharge 

hour. The strategy is very similar to the corresponding strategy for Renewable Control shown in 

Figure 3-2 except that the trigger for operating the chillers is off-peak electricity rates rather than 

available renewable power.  
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Figure 3-8. Stratified chilled water CTES flow chart for the Cost Control strategy with design 

parameter highlighted 
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3.3.2 Ice CTES Cost Control Strategy 

Figure 3-9 illustrates the Cost Control strategy for ice CTES. Once again, the primary 

difference between this strategy and that for Renewable Control is the activation of the chillers 

through electricity rates rather than the presence of renewable power. Once the off-peak rates are 

in effect, the chillers are free to run using as much power as is required rather than being limited 

by the current renewable generation. For this reason, the chillers operate more frequently at full 

load and only unload when there is not sufficient uncharged storage capacity and/or cooling load 

to justify running at full load. This is one reason that storage systems in the field are not equipped 

with variable frequency drives. The improved part load performance gained in a small portion of 

the operation time does not compare well with the drive losses and does not justify the added cost. 
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Figure 3-9. Ice CTES flow chart for the Cost Control strategy with design parameter highlighted 
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load and chiller system capacity for the remainder of the day are assumed. In the Cost Control and 

Renewable Control strategies, the knowledge of future cooling loads and chiller system capacity 

can be used to make key decisions such as whether to default to full-load chiller operation to meet 

the cooling loads or operate at part-load. Knowledge or forecasts of these and other inputs can also 

be used to simultaneously make multiple future control decisions determined by optimization 

algorithms. This method is called model predictive control and is applied here for the chilled water 

systems with operating cost reduction as the optimization objective. 

Model predictive control (MPC) is a computationally-intensive method of process control 

that involves solving an open-loop control problem at each timestep over a finite horizon (Dai et 

al. 2012). The current, measured state of the system serves as the initial state for the control 

problem. An optimization results in a predicted or forecasted optimal control sequence to be 

implemented over the finite horizon and the first step in the sequence is implemented. The diagram 

in Figure 4-1 shows the optimal control sequence as the dashed line labeled “Optimal input 

trajectory (time k).” After the first control step is implemented, a new initial state is measured for 

use in developing a new optimal control sequence. This new control sequence is shown as the 

dashed line labeled “Re-optimal input trajectory (time k+1)” in Figure 4-1. Once the new control 

sequence is adopted, the remainder of the sequence developed during the previous timestep is 

discarded. This strategy results in shifting control horizons and model predictive control is also 

known as “receding horizon control” or “moving horizon control.” 
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Figure 4-1. Model predictive control diagram (Dai et al. 2012) 

4.1 HVAC Model Predictive Control Literature Review 

Implementation of cool thermal energy storage systems with MPC strategies has been 

studied extensively (Wenzel et al. 2014; Wenzel et al. 2016; Kim 2013; Deng et al. 2015; Cole et 

al. 2012; Ma et al. 2009). Because an optimization is performed at each timestep, either 

multiple-minute timesteps or significant computational power are required. Early applications of 

MPC were in chemical processing and oil refining since computational power was limited, but the 

processes can be successfully controlled with long timesteps. Faster computers and parallel 

optimization algorithm development have allowed for MPC implementation in systems with faster 

dynamics such as power and HVAC systems. As long as at least one degree of freedom is provided, 

MPC and other optimization-based control strategies can be implemented. For a power system, 
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examples of this degree of freedom could be a pumped hydropower storage system or an array of 

batteries. For an HVAC system, the degree of freedom could be in the form of a hybrid geothermal 

and cooling tower heat pump system or cool thermal energy storage. 

MPC has been in operation on a large scale at the Stanford University campus since 2015. 

Wenzel et al. (2014) describe the system and provides estimates of operating cost savings achieved 

through implementation of their control strategies. In this case, the operating cost is based on 

natural gas costs, electric energy costs, and electric demand charges. The campus chilling and 

heating loads are served by heat recovery chillers, conventionally operating chillers with cooling 

towers, cool thermal energy storage, gas/electric water heaters, and warm thermal energy storage. 

The finite control horizon used for the MPC algorithm (variable p in Figure 4-1) in this case is one 

week or 168 hours.  

By allowing the optimization algorithm to determine the optimum equipment states at each 

fifteen-minute timestep, the authors found that some equipment states would be switched from off 

to full load and back to off again in three sequential control decisions. While this sequence provides 

the theoretical minimum operating cost, the difference in savings between the minimum and the 

suboptimum cost, which leaves the equipment off or on for all three timesteps, is less than a few 

dollars. Rather than incorporating models that would address increased equipment maintenance 

for more frequent cycling as well as the reduced equipment lifetime, the authors implemented an 

operating cost penalty based on the percentage load change between timesteps as a surrogate to 

address the negative impacts of more frequent equipment cycling. This penalty encourages more 

uniform equipment operation as shown by the difference in the profiles of the red, green, and blue 

curves in the top versus the bottom plots in Figure 4-2. Prior to the application of the load change 

penalty, the conventional chiller, heat recovery chiller, and cold water storage draw all experienced 
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drastic state changes over short time periods as shown in the plot on the top. A penalty of one 

dollar per percent change per hour causes the smoother transitions shown in the bottom plot. The 

authors note that operating with this penalty adds to the annual operating cost, but they do not 

specify by how much. 

 

Figure 4-2. Wenzel et al. (2014) simulation impact of load change penalty 

After the Stanford University system came online in 2015, Wenzel et al. (2016) provided 

an update on estimates of the operating cost savings as well as details about operator interaction 

with the autonomous MPC system. In the first several months of operation, the operating cost 

savings were over 10% as compared to operating with a set schedule. This savings was realized, 

in part, because the system was run in autonomous MPC mode over 90% of the time. One major 

contributor to the cost savings is a reduction in electricity demand charges. Given a fixed set of 

equipment, electric demand savings can come from two sources. One is that the equipment is 

routinely being run at part load in which case some equipment pieces may be oversized. The 
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second potential source of savings is the staging of various equipment types so that they aren’t 

running coincidently.  

For the research presented in this dissertation, model predictive control strategies are 

implemented only on CTES systems and comparisons are drawn between different types of control 

strategy inputs. Once chiller and CTES capacities are determined for this system, a significant 

reduction in demand charges is not available. There are not degrees of freedom available for 

staging the electricity consumption and reducing demand charges. If demand charges were reduced 

by limiting the chiller system to part-load operation, the chiller system capacity would be reduced 

to minimize capital costs as well as to increase system efficiency by operating at higher part-load 

ratios. Demand charges are typically determined by the peak power consumption in the current 

month or sometimes by the peak consumption over the entire year. During each month the building 

experiences cooling loads, the chiller operates at full load at some point which establishes the 

facility demand which serves as the basis for the electricity demand charge. 

Cole et al. (2012) modeled a CTES system with MPC in the Austin, Texas climate. One 

optimization objective in this case is the total electricity cost (including both energy and demand 

charges) and another is the total system energy usage. As opposed to the Stanford University 

system, this study considers only the cooling loads to be met and doesn’t incorporate heating or 

hot water loads. The Cole investigation also assumes that all input variables are known perfectly 

and no disturbances are introduced. This assumption means that the results achieved are an upper 

limit of what is achievable with actual measured data. The MPC system is compared to two 

baseline systems, one without any CTES system and another with a CTES system using a storage-

priority control strategy. The results for the comparison with a system without any CTES are 

presented here. When the optimization objective is to minimize overall electricity cost, the MPC 
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system results in a 41% cost savings and 2% energy savings over a system without storage. When 

the optimization objective is to reduce annual energy usage, the MPC system results in a 28% cost 

savings and 4% energy savings over the system without storage. The energy minimization 

objective results in increased costs (28% savings versus 41% savings) and minimal increases in 

energy savings (4% savings versus 2% savings). 

Verrilli et al. (2016) applied MPC to a district heating system with warm thermal energy 

storage in Finland. The system is composed of a combined heat and power boiler, a grate boiler 

and two oil boilers in addition to the warm storage tank. The control strategy timestep is one hour 

and the control horizon is only twelve hours. The authors state that the short time horizon was 

chosen due to computation times required for longer time horizons.  They also saw a lack of 

significant performance improvement seen with longer time horizons presumably due to the 

capacity of the storage system and the length of the daily heating period. The MPC strategy results 

are compared to a baseline in which operators are manually adjusting boiler operation in what 

amounts to a “boiler-priority” control. The warm thermal energy storage system is not used 

efficiently in this manual process. The optimization objective for the MPC strategy is to minimize 

total fuel cost. Each of the three boiler types has a different efficiency, so the warm thermal energy 

storage should be utilized to avoid operation of the least efficient boilers. The authors performed 

a simulation for a 15-day period and drew a cost comparison amongst three different strategies. 

The baseline strategy described above is referred to as current practice (CP), the baseline MPC (B-

MPC) uses perfect input data, and the third strategy utilizes mixed-integer linear programming 

(MILP) to optimize the MPC strategy using imperfect forecasts (abbreviated as MILP-MPC). The 

results show total fuel costs which are 7.2% below the current practice with perfect input data and 

7.1% below current practice with imperfect forecasts. The minimal difference between the two 
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strategies using model predictive control demonstrates the robustness to disturbances in the 

forecasted inputs. The plot in Figure 4-3 shows the warm thermal energy storage state of charge 

for the three control strategies. From hours 125 to 240 it is clear that the MPC strategies are taking 

advantage of the storage capacity while the manual boiler-priority control leaves storage with a 

high state of charge. Focusing on the difference between the blue and black lines, the impact of 

imperfect forecasted inputs is seen through the high frequency changes in the state of charge for 

the MILP-MPC strategy. 

 

Figure 4-3. Warm thermal storage state of charge for MPC with forecasted inputs (MILP-MPC), 

MPC with perfect inputs (B-MPC), and manual current practice (CP) (Verrilli et al. 2016) 

4.2 Implementation of CTES Model Predictive Control 

Model predictive control allows for increased flexibility in CTES operation. A 

chiller-priority control strategy is one in which the chiller system is preferentially utilized to meet 
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building cooling loads up until the cooling load exceeds the full-load chiller capacity. A 

storage-priority control strategy seeks to meet the building cooling load by first discharging the 

storage system up until either the cooling load exceeds the instantaneous discharge rate of the 

storage system or the storage has been fully depleted at which time the chiller system comes online 

to directly meet the load. The Cost Control strategy amounts to a chiller-priority control strategy 

during times with off-peak electricity rates and a storage-priority control strategy when on-peak 

rates are in effect. The model predictive control strategy does not impose either of these limitations. 

The specific MPC strategy detailed here is referred to as Model Predictive Control 

throughout this dissertation. Because Model Predictive Control involves optimization at each 

timestep, perfect knowledge is not required for its implementation. If knowledge of the control 

inputs is perfect, the optimization need not be repeated at each timestep but only once for each 

finite time horizon. In the case of these CTES simulations, the horizon is a 24-hour period. Model 

Predictive Control is employed only for stratified chilled water storage systems in this research 

effort. The optimization problem for each horizon is posed through the following equations with 

the minimization of electricity cost as the objective: 

  [ ( )]electricityMin Cost
x

x   (22) 

 , ,

1

N

electricity electricity i chiller i
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where the total 24-hour electricity cost is Costelectricity and does not include demand charges for the 

reasons stated in Section 4.1. N is the number of timesteps in the control horizon and the electricity 

rate energy charge is Rateelectricity in $/kWh. Pchiller is the power consumed by the chillers in kWe 

and Δt is the length of the simulation timestep. The optimization variables in the vector, x, are 

PLR, the chiller system part-load ratio, and Charge, the storage charge level (fraction of chilled 

water at the chiller supply temperature multiplied by the storage capacity) in ton-hours (kWht). 

Cap is the thermal capacity of the chiller and Q̇L is the building cooling load, both in tons (kWt). 

The constraint specified in Equation (25) is an energy balance that requires that the cooling load 

is always met whether it is by the chiller system or by the discharging of storage. The constraint 

in Equation (26) is that over the 24-hour period, the sum of the chiller output must equal the sum 

of the cooling load. Because the storage system begins with a full state-of-charge, this constraint 
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ensures that storage is fully charged at the beginning of each 24-hour period. This constraint 

indicates that heat gains to the CTES system are neglected in these simulations due to their relative 

insignificance. The daily recharge cycle for the CTES systems along with the moderate delta 

between the outdoor ambient and chilled water temperatures justify this simplification. 

The annual simulations are performed using the MATLAB function for solving linear 

programs, linprog (MathWorks 2018). Use of this function is possible only with the linearized 

chiller performance curves presented in Section 2.5.5. Linprog finds the minimum of a problem 

specified in the following format: 

 min  such that T

x

A x b

f x Aeq x beq

lb x ub

 


 
  

  (29) 

 (1) (1) (2) (2) ... ( ) ( )Tf x f x f x f l x l      (30) 

where f Tx indicates a row vector of constants, f, multiplying a column vector of variables, x, of 

length l as shown in Equation (30). The x vector is the output of interest from the solver. The first 

constraint, A∙x ≤ b, is for linear inequalities where A is a k-by-l matrix where k is the number of 

inequality constraints. Aeq∙x=beq is for linear equalities and Aeq is an m-by-l matrix where m is 

the number of equality constraints. Lastly, bound constraints are input into the vectors, lb and ub 

for lower and upper bounds, respectively. These vectors are both of length l and the variables in x 

must lie between them. 

The default linear programming algorithm used by linprog is a simplex method algorithm 

called dual-simplex. The other two available algorithms are different interior point methods. The 

simplex and interior point methods differ in their approach to the problem in that simplex methods 

visit the vertices of the feasible region of the problem while interior point methods initially visit 
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points interior to the feasible region until the optimal vertex is reached. For a linear optimization, 

unique solutions will be at a vertex. The methods also differ in their number of computational steps 

to convergence depending on the type of problem being solved. Because the simplex and interior 

point methods return approximately the same results over annual simulations, the MPC control 

strategy is implemented using the default, dual-simplex algorithm. 

To minimize energy cost for the electricity needed to run CTES system chillers, the chiller 

power consumption must be minimized. The water-cooled chiller system coefficient of 

performance is defined as: 

 
( )factor rated

chiller

PLR Cap CapCooling Power Output
COP

Electric Power Input P
    (31) 

where Capfactor is a value multiplied by the chiller system’s rated capacity, Caprated, to give the 

capacity at current conditions. Capfactor is given by the chiller performance curves and is function 

of the ambient conditions and the chiller set point temperature (CEC, 2012). Rearranging 

Equation (31) to return the chiller power gives: 

 
( )factor rated

chiller

PLR Cap Cap
P

COP
   (32) 

The first two variables in the numerator and the variable in the denominator are grouped into a 

chiller power factor, Pchiller,factor, which is a linear function of the chiller system part-load ratio, the 

ambient wet-bulb temperature, and the chiller leaving chilled water set point temperature. The set 

point temperature is constant at 4.4°C (40°F) for the stratified chilled water simulations. The linear 

function for the Pchiller, factor comes from a combination of the linearized performance curves plotted 

in Figure 2-34 and the chiller system capacity at ambient conditions. The chiller power factor is 

defined as follows: 
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where a, b, and c are constants coming from a linear regression for the chiller power factor. 

 Inserting Equation (34) into the optimization objective (Equation (23)) gives the following 

equation: 
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Optimization objective functions cannot contain constant terms without creating additional 

variables for these constants and then constraining them to be a constant value. With perfect 

weather knowledge, both the first and last terms in Equation (35) are constant. Rather than creating 

additional variables in the optimization, these terms are accounted for in post-processing steps by 

adding their values to get the actual chiller power. The new optimization objective is thus: 

 ,

1

( )
N

electricity electricity i rated

i

Cost Rate bPLR Cap t


    (37) 

where the electricity rates considered are described in Section 2.6.3. The only variable to be 

optimized in Equation (37) is the part-load ratio, PLR. These PLR values are the first N entries in 

the x vector for the linprog solver. The corresponding first N entries in the f vector of constants are 

the coefficients multiplying PLR at each timestep: 

 , ;  1,2,...,i electricity i ratedf Rate bCap t i N     (38) 
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The optimization problem also requires N variables for the storage tank charge, Charge, 

because this value must be constrained throughout the optimization so as to avoid the situation 

where the cooling load is not met as indicated by a negative charge and also the situation where 

the charge is greater than the physical capacity of the tank. The f vector of constants has a value of 

zero for these N entries because the storage tank charge is not part of the optimization objective. 

The full x vector is given in Equation (24). 

The constraints required for this optimization are all defined through equalities and 

constant bounds, so the inequality constraint type shown in Equation (29) is not required here. The 

equalities are given in Equations (25) and (26). They ensure that the cooling load is met either by 

storage or directly by the chiller system and that the storage tank is fully charged each day. In 

matrix form, these equality constraints are: 
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 (39) 

where Aeq is an N+1-by-2N matrix with N+1 equalities for 2N variables. The 2N variables are in 

the x vector and the beq vector has N+1 elements, one for each equality. The second element in 

vector beq has an extra term, Capstor, the capacity of the storage tank. This term accounts for the 

Chargei-1 term in Equation (25). For the first control decision, the charge for the previous timestep 



  122 

 

 

is the capacity of the system since it is constrained to be fully charged at that point. For future 

control decisions, the charge from the previous timestep is used. 

The last set of constraints are constant bounds on the variables which are given in Equations 

(27) and (28). The first constraint limits the chiller system operation to be between the limits of 

being idle at a part-load ratio of zero to operating at full load at a part-load ratio of 1. The second 

constraint limits the storage charge levels to lie between the limits of zero and the physical 

capacity. The lower bound, lb, and upper bound, ub, vectors are constructed as follows: 
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10
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  (40) 

where each of the vectors has 2N elements. 

The formulation of the problem shows that the optimization is indifferent to the fact that 

this is an energy simulation that is stepping through time. The matrices and vectors include 

variables for each timestep considered, but the algorithm is solved for all of the chiller system 

part-load ratios and storage charge levels at once. With perfect inputs, the optimization is necessary 

only once per control horizon or 24 hours in this case. As an example, if the cooling load were a 

forecast rather than the actual cooling load, the first step would look identical to the only step in 

the case with perfect knowledge. However, for the second timestep another optimization would be 

performed using the updated storage charge resulting from the imperfect cooling load prediction 

and an updated cooling load forecast could also be considered.  
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Using perfect inputs, optimizations are performed once for each day of the year. The result 

of each optimization is an x vector containing part-load ratio and storage charge values for each 

timestep of the day. These values are concatenated with the values for the previous days through 

the final day. The storage charge values are not required for post-processing but could be useful 

for determining whether or not the storage capacity is over-sized. If the storage tank never 

approaches a fully depleted state, the storage tank can likely be downsized.  

The part-load ratio values are used to determine both the annual chiller electricity 

consumption as well as the cost for that electricity consumption. To obtain the chiller power from 

the PLR values, Equation (35) is used with a equal to 0.0126 kWe, b equal to 0.118 kWe, and c 

equal to 0.000511 kWe/°C. These coefficients come from a combination of the linearized chiller 

system performance model plotted in Figure 2-34 and the chiller system capacity based on ambient 

conditions. The sum of the chiller power values multiplied by the simulation timestep gives the 

annual chiller electricity consumption in kWh. Multiplication of the chiller power by the 

simulation timestep and applicable electricity rate for that time gives the electricity for one 

timestep. The sum of these values is the annual chiller system electricity cost. The energy 

consumption and cost are then compared with equivalent results using the Cost Control strategy 

to determine the benefits of Model Predictive Control. These results are presented in Section 5.4. 
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5  RESULTS 

5.1 System of Analysis Definition 

The results of this research have potential impacts on various stakeholders including 

building owners (end-users), electric utilities, regional transmission organizations (RTOs), 

sustainability advocates, and mechanical systems equipment manufacturers. As such, a definition 

of the system of analysis is important for determination of the benefits and costs to these various 

stakeholders. The components of the larger “system” include the utility grid (including generation 

from various sources and transmission), grid-connected wind or solar generation, and the building 

with an HVAC system (chillers with or without storage). As a simple example, a grid-connected 

solar PV system, building, and utility grid are illustrated in Figure 5-1. The PV panels produce 

direct current (DC) that is then converted to alternating current (AC) through an inverter. The AC 

power is consumed by the building and any excess power is sold to the grid through the electric 

meter. This process is termed “net metering” and the most common implementation involves the 

building receiving an offset equal to the retail electricity rate for each unit of renewable power 

delivered to the grid. This is sometimes referred to as “conventional net metering” because several 

states have begun to move toward an offset that more closely approaches the wholesale electricity 

price (National Conference of State Legislatures 2016). 
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Figure 5-1. Grid-connected PV panel system installed on a small building (Big Dog Solar Energy 

2016) 

For this research, the boundary of the system of analysis is either the Large Office or 

Secondary School building. Crossing the system boundary are the electric power lines coming 

from the renewable generation source to the chillers and the power lines going to and from the 

utility system. While the renewable power generated could be utilized by the building in many 

other ways, the focus of this research is the magnitude and timing of the chiller’s power profile 

relative to the demand experienced by the grid and the generation produced by the renewable 

resource. The approach to the sale of the excess renewable power is the conventional net metering 

approach whereby the excess power is sold to the grid at the retail electric rate. 
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5.2 Optimization Target Calculation for Parametric Studies 

The optimization targets considered for the parametric studies are directly related to the 

two types of control strategies detailed in Section 3, Renewable Control and Cost Control. 

Renewable Control attempts to maximize the use of renewable energy being generated to operate 

the chillers whenever possible. In this case, the optimization target is the fraction of chiller 

electrical energy consumption met by renewable energy generation. 

Renewable Utilized by Chiller [kWh]
Chiller Energy Met by Renewable [-] = 

Total Chiller Energy [kWh]
  (41) 

The Cost Control strategy aims to reduce the electricity cost by operating the chillers only 

when the off-peak electricity rates are in effect. The total 20-year cost is made up of the net present 

value of the electricity cost over 20 years and the capital costs. The capital costs include installed 

chiller systems, CTES systems, wind turbines, PV panels, and inverters. The sources and values 

for these costs are detailed in Section 2.6. While the Cost Control strategy aims to reduce the 

electricity cost, the lowest annual electricity cost does not always correspond with the lowest total 

20-year cost. By varying the design parameters shown in Table 3-1, lower electricity costs can be 

achieved through, for example, larger storage capacities. This is because a larger storage capacity 

allows the chiller system to remain idle during the on-peak rate period more often since there is 

more storage available to meet the load. However, the additional storage may cost be more than 

the electricity cost savings. Selecting a range of parameter values and performing calculations for 

the total 20-year cost allows for the selection of the design that balances lowest capital cost with 

lowest operating cost to give the lowest total 20-year cost. 

The net annual electricity cost calculation is dependent on the system boundary and net 

metering definition presented in Section 5.1. By way of example, a 24-hour period is displayed in 
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the eight plots shown in Figure 5-2. The four plots on the left are for the building with no thermal 

energy storage (referred to as the no-storage case) and those on the right are for the same building 

but with storage operating using the Renewable Control strategy. The top plot shows the chiller’s 

power consumption as a negative value; note that the discontinuous jumps correspond to the 

transition between the operation of a single chiller and two chillers in parallel. The second plot 

shows the solar power output from a PV array rated at 250 kWe. The third, labeled “Net Utility 

Impact (kWe),” is the sum of the previous two plots and corresponds to the net production 

(positive) or demand (negative) experienced by the utility. In both the Renewable Control and 

no-storage case, the net impact close to the peak solar generation time of day is near zero. The 

differences between the two cases are easy to see during the afternoon when the larger size chiller 

system required for the no-storage case consumes significantly more power in order to directly 

meet the building’s cooling load. The fourth plot shows how the net electricity value is computed 

by multiplying the time-of-use electricity rate by the net utility impact from the plot in the third 

row. The shaded area in this plot shows the peak rate portion of the day and the curve features an 

amplification of the value of the electricity from the third plot during this time period. At 3 p.m. 

and 8 p.m. (the 15th and 20th hour in the plots), there is a discontinuity in the electricity value due 

to the utility rate change. The net annual electricity cost is the integration of the net electricity 

value throughout the entire year.  
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Figure 5-2. Net annual electricity calculation value for 250 kWe of PV capacity for no-storage 

(left) and with storage operating using Renewable Control (right), shaded region shows peak 

time-of-use rates 

5.3 Parametric Study Results 

Because there are two targets or objectives being considered in this parametric study, the 

optimization is multi-objective. A single solution that optimizes both the chiller energy met by 

renewable and the total 20-year cost does not exist. In addition to being multi-objective, there are 

many independent parameters (listed in Table 3-1) that can be adjusted in the course of 

optimization. The multiple objectives and large number of system variables increase the 

computational intensity of performing a multi-objective optimization. Parametric studies are 

employed in the multi-objective portion of this research rather than using multi-objective 

optimization methods. The results of the parametric studies are used to generate Pareto fronts, as 
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discussed in the subsequent section. Results for model predictive control with a single optimization 

objective are presented in Section 5.4. 

5.3.1 The Pareto Front Concept 

A parametric study that varies all of the independent variables shown in Table 3-1 over 

their range of possible values is carried out. The objective of the parametric study is to identify 

optimum parameter sets based on the two metrics previously discussed. One method of graphically 

displaying trade-offs in multi-objective optimizations is by the use of a Pareto front (Stadler 1988). 

A simple example of the Pareto front concept is shown in Figure 5-3 where many points 

corresponding to trials in the parametric study are plotted in the two dimensions corresponding to 

the values of the metrics associated with each point (referred to as Objective 1 and Objective 2). 

In this example, I am trying to minimize each of these objective functions and therefore better 

results are closer to the origin. Each of the green points indicates a feasible result for various 

combinations of values across the parameter space. The yellow point is a result that is infeasible, 

there is no combination of parameter values that will result in these objective values. The solid red 

line then maps a series of variable combinations that lie on the edge of what is feasible and 

infeasible. This line is referred to as a Pareto front and contains the set of solutions that are non-

dominated. Non-dominated means that neither of the objective functions can be improved without 

degrading the other. The Pareto front is useful in that it indicates the set of solutions that should 

be considered. Barring some other constraint, there is no reason to pick a solution that lies inside 

the Pareto front as at least one objective function can be improved by moving to the Pareto front. 

The plot on the right in Figure 5-3 shows a modification to the general Pareto front concept 

that is used for this research. The two objectives considered are the total 20-year cost and the 

fraction of the chiller energy met by renewable. The optimization seeks to minimize the total 
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life-cycle cost but it seeks to maximize the chiller energy met by renewable and therefore solutions 

that lie to the left and up are more optimal. The format of the Pareto front has been modified such 

that the Pareto front lies on the feasible points that maximize the chiller energy met by the 

renewable resource and minimize the total 20-year cost. 

 

Figure 5-3. General Pareto front concept (left) and Pareto front specific to this research (right) 

Figure 5-4 shows an example of the Pareto front developed using simulation results from 

this research for the Secondary school in California with wind as the installed renewable energy 

resource and ice as the cool thermal energy storage medium. The ordinate represents the fraction 

of chiller electrical energy met by renewable energy sources while the abscissa represents the total 

20-year cost with storage and renewables normalized to the same cost for the no-storage system 

without renewables. 

Each point on the plot represents a single simulation run using a different set of design 

parameters in Table 3-1. All of the points consider the wind resource with a generation capacity 

[$]

[-
]
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that is equal to the no-storage full-load chiller capacity. The specific points that map the Pareto 

front have the highest chiller electrical energy met by wind generation for a particular cost.  

The results with the lowest portion of chiller energy met by wind and the lowest cost, close 

to point (1), are all associated with operating using the Cost Control strategy. Not surprisingly, 

these lowest-cost systems all have a storage recharge hour around 2 p.m. which is just before the 

onset of the on-peak electricity rate period. They also have low capital costs and use the minimum 

possible size storage and chiller systems. The minimum part-load ratio for these systems varies 

between 0.3 and 0.5 due to the ice CTES charging behavior. Because the thermal storage system 

charging rate is limited as the ice CTES system approaches a full state-of-charge, allowing the 

chillers to operate at low part-load ratios means that the storage system will be able to accept the 

charge more often which results in greater utilization of the renewable power. 

The jump from point (1) to (2) occurs as a result of a transition to operating using the 

Renewable Control strategy. The chiller and storage sizes are still at their minimums and the chiller 

minimum operating part-load ratio is 0.5. Because the wind resource at this location tends to be 

strong at night, the recharge hour moves towards 8 a.m. which allows for the storage to recharge 

without any requirement for a building cooling load to be met. 

Moving from point (2) to (3), the storage capacity is increasing while all other parameters 

remain constant. From (3) to (4), the chiller capacity is also increasing. These two segments of the 

Pareto front show that the effect of increasing equipment size and the associated capital cost 

provides diminishing returns with respect to the utilization of the renewable resource. At point (4), 

there is a discontinuity in the Pareto front where the chiller minimum part-load ratio constraint 

jumps from 0.5 to 1 and both the storage and chiller sizes return to their minimums. This shift 

occurs when the chiller energy reduction that arises from operating only at full-load outweighs the 
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gains in the chiller energy met by wind that come from allowing operation at low part-load ratios 

along with increasing equipment sizes. In the transition from (4) to (5), the storage capacity begins 

to increase once again which allows the building’s chilling system to achieve a greater fraction of 

chiller system energy met by wind energy but it comes at an increased 20-year cost. 

 

Figure 5-4. Pareto front development example for wind with generation capacity equal to the 

no-storage full-load chiller power 

 

(1)

(2)

(3)
(4)

(5)
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5.3.2 Results for Direct Chiller Systems without Storage 

The 20-year total cost for the no-storage case and the associated chiller energy met by 

renewable results provide a useful comparison to the Renewable Control and Cost Control results. 

The cost result for no-storage without any renewable capacity available is used to normalize all of 

the other results. The no-storage system results are shown in Table 5-1 for four levels of renewable 

energy capacity. Each one is a multiple of the no-storage full-load chiller power for that particular 

location. For the wind resource in particular, the 20-year cost becomes increasingly negative as 

more renewable capacity is considered. This negative cost is indicative of positive revenue coming 

from wind generation in excess of the chiller system electric consumption. 

Table 5-1. No-storage system results for varying levels of renewable capacity based on the 

no-storage full-load chiller power 

Location

Renewable 

Capacity 

Multiplier

Total 20-

Year Cost 

[$MM]

Chiller 

Energy Met 

by Wind [-]

Total 20-

Year Cost 

[$MM]

Chiller 

Energy Met 

by Wind [-]

Total 20-

Year Cost 

[$MM]

Chiller 

Energy Met 

by Solar [-]

Total 20-

Year Cost 

[$MM]

Chiller 

Energy Met 

by Solar [-]

0 1.10 - 3.34 - 1.10 - 3.34 -

1 -1.42 0.66 -1.47 0.58 0.92 0.67 3.00 0.55

2 -3.94 0.77 -6.29 0.71 0.75 0.77 2.67 0.70

4 -8.99 0.83 -15.92 0.80 0.40 0.82 2.00 0.77

0 1.14 - 4.83 - 1.14 - 4.83 -

1 -0.76 0.65 -0.44 0.61 1.09 0.70 4.69 0.52

2 -2.66 0.72 -5.71 0.69 1.04 0.78 4.54 0.64

4 -6.46 0.76 -16.24 0.75 0.94 0.82 4.26 0.71

0 0.79 - 2.77 - 0.79 - 2.77 -

1 -1.14 0.53 -1.89 0.49 1.05 0.59 3.39 0.50

2 -3.08 0.64 -6.55 0.62 1.31 0.75 4.01 0.67

4 -6.95 0.72 -15.87 0.72 1.82 0.83 5.25 0.77

0 1.22 - 6.13 - 1.22 - 6.13 -

1 -1.53 0.60 -0.06 0.60 1.48 0.53 6.73 0.35

2 -4.28 0.72 -6.26 0.73 1.74 0.66 7.32 0.48

4 -9.78 0.79 -18.64 0.81 2.27 0.73 8.51 0.57

Wind Solar

Secondary School Large Office Secondary School Large Office

Texas

California

Wisconsin

New York
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5.3.3 Results for Secondary School with Chilled Water CTES 

Sections 5.3.3 through 5.3.6 provide CTES Pareto front results for all four combinations 

of building and storage type, Secondary Schools and Large Office buildings with both chilled 

water and ice CTES. Each set of curves is presented for solar and wind generation capacity at three 

different levels – one, two and four times the full-load chiller power required for the no-storage 

chilling system. Additionally, each plot contains individual points for the no-storage case at the 

various renewable generation levels as points of comparison. In each plot, the total 20-year cost is 

normalized by the 20-year cost for a direct chiller system without any renewable generation 

capacity installed. The cost is normalized by a value representative of the peak and integrated 

cooling load for the particular location so that variations by location are functions of the renewable 

resource. 

Figure 5-5 shows the resulting Pareto fronts for the Secondary School with chilled water 

CTES and solar as the renewable generation resource. For each Pareto front, the lowest cost points 

are associated with the Cost Control strategy. These points show a marked difference among the 

locations with greater and lesser solar resource. For Texas and California, installing greater levels 

of PV capacity decreases the 20-year cost while the opposite is true for Wisconsin and New York. 

This behavior is due to the relatively low levels of solar irradiance in Wisconsin and New York 

compared to Texas and California. The single points representing the no-storage case show greater 

20-year cost compared to the Cost Control values at the same level of solar PV capacity, but they 

result in a greater fraction of the chiller energy consumption being met by the solar resource when 

compared to the lowest operating cost cases with storage. This behavior is attributable to some 

overlap between the solar resource and coincident building cooling loads. The Cost Control 

strategy foregoes operating the chillers during on-peak hours (which start at 3 p.m.) and, during 
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this period, the solar resource is still significant. Due to the onset of the on-peak hours, the optimum 

recharge hour for the Cost Control strategy is 2 p.m. 

Similar to the line between points (1) and (2) in Figure 5-4, each curve displays a near 

vertical increase in chiller energy met by solar. The point at the top of this sharp increase marks 

the transition to Renewable Control operation. Not surprisingly, each of these points is above the 

corresponding no-storage point in terms of the chiller energy being met by the solar resource 

because the Renewable Control strategy specifically emphasizes maximizing the utilization of 

renewable energy generation. Increasing gains in solar utilization are realized with little increase 

in cost as the minimum chiller plant part-load ratio is reduced. The 20-year cost increases slightly 

in this case because the cooling load is met by a chiller system that is operating less efficiently on 

average, but the chiller energy met by solar increases because a lower level of solar irradiance is 

sufficient to trigger chiller operation. Even though more total electricity is being consumed to meet 

the same cooling load, a larger fraction of the consumed electricity comes from the solar resource. 

This trend holds until the minimum chiller plant part-load ratio reaches a low of 0.5 because 

beyond this point, the increase in 20-year cost outweighs the solar utilization benefit. At this point, 

the tank recharge hour is approximately 2 p.m. due to a combination of the solar resource being 

nearly at its peak at that time and a desire to have fully-charged storage going in to the peak cooling 

loads in the afternoon. Both the tank and chiller capacities are at their minimum size from the 

partial storage strategy sizing. This particular point can be identified as an inflection point or knee 

in each Pareto front curve. Each of the Pareto fronts in this and the following sections exhibit a 

similar behavior and the corresponding knee or inflection point represents the set of operating 

parameters that enables a significant increase in renewable utilization with only a minor increase 

in the 20-year cost. The Renewable Control points with increasing costs involve increasingly larger 
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tank and chiller capacities. While the utilization of the solar resource improves, the increased 20-

year cost may not justify the oversizing of the equipment. 

 

Figure 5-5. Solar resource Pareto fronts for the Secondary School with chilled water CTES for 

Texas (upper left), California (upper right), Wisconsin (lower left), and New York (lower right) 
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The Pareto fronts displayed in Figure 5-6 show the results of the parametric study for the 

Secondary School with stratified chilled water CTES and wind as the renewable resource. One 

significant distinction between these Pareto fronts and those for the solar resource in Figure 5-5 is 

that the 20-year costs are negative for each location. The negative cost indicates that revenue is 

being generated and this is true for all of the storage and no-storage cases. The cost difference 

between solar and wind is attributed to higher capacity factors for wind compared to solar in all 

four locations as well as the lower capital costs for wind turbines compared to photovoltaic panels. 

Another notable difference is that all of the storage strategy points utilize the wind resource more 

effectively than the no-storage points. Because the wind resource tends to be stronger at night and 

the Cost Control strategy will idle the chillers between 3 p.m. and 8 p.m., this strategy allows a 

greater fraction of the chiller’s energy to be met by wind generation compared to the no-storage 

case when the chillers use the most energy in the middle of the day. The optimum tank recharge 

hour for the wind resource is approximately 8 a.m. because the chillers benefit by utilizing the 

strong nighttime wind resource to charge before the beginning of the cooling day. 



  138 

 

 

 

Figure 5-6. Wind resource Pareto fronts for the Secondary School with chilled water CTES for 

Texas (upper left), California (upper right), Wisconsin (lower left), and New York (lower right) 
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5.3.4 Results for Large Office Building with Chilled Water CTES 

Figure 5-7 and Figure 5-8 show the Pareto fronts for the Large Office building with chilled 

water CTES for the solar and wind resource, respectively. The patterns seen in these Pareto fronts 

are very similar to those seen in the Pareto fronts for the Secondary School with stratified chilled 

water CTES displayed in Section 5.3.3. This indicates that, after normalizing the results by a value 

that is indicative of the building cooling load as well as the geographic location, the no-storage 

and no renewable 20-year cost, the results can be applied to different types of buildings. These two 

buildings have a similar occupancy schedule as shown in Figure 1-9 and the same electricity rate 

structure for each location. Buildings which vary these two profiles would result in a different set 

of Pareto fronts. One example of this difference is presented in Section 5.3.7. This example uses a 

different electricity rate structure that includes demand charges in addition to energy charges. 
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Figure 5-7. Solar resource Pareto fronts for the Large Office with chilled water CTES for Texas 

(upper left), California (upper right), Wisconsin (lower left), and New York (lower right) 
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Figure 5-8. Wind resource Pareto fronts for the Large Office with chilled water CTES for Texas 

(upper left), California (upper right), Wisconsin (lower left), and New York (lower right) 
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5.3.5 Results for Secondary School with Ice CTES 

The Pareto fronts in Figure 5-9 and Figure 5-10 show the results for Secondary Schools 

with ice CTES systems for the solar and wind resource, respectively. As explained in Section 5.3.1, 

the minimum chiller system part-load ratio is generally lower along the Pareto front for ice CTES 

than it is for chilled water CTES. The reason for this difference is due to the fixed glycol 

temperature set point during charging of the storage system as well as the storage system charge 

rate characteristics shown in Figure 2-13. When the ice CTES system approaches its full state-of-

charge, the charge rate it can accept decreases. If the chillers are able to operate at low part-load 

ratios, the storage system will be able to accept the charge during more time-steps and a greater 

fraction of the overall cooling load will be met by renewable power. 

Comparing the ice CTES results with the stratified chilled water results in Figure 5-5 and 

Figure 5-6, there are several similarities and differences. The storage tank recharge hours of 

approximately 2 p.m. for the solar resource and 8 a.m. for the wind resource are unchanged for the 

ice CTES case. These recharge hours are primarily a function of the renewable resource profile. 

While the inflection points or knees of each Pareto front curve occur at similar values of chiller 

energy met by renewable power, the ice CTES curves do not come as close to meeting 100% of 

the chiller energy with renewable even as the equipment sizes and renewable generation capacity 

are increased. This is partially due to the storage system’s charging and discharging rate 

characteristic. When the peak cooling periods occur in the summer and storage begins to discharge, 

the available storage system discharge rate declines. The chiller system must operate to meet the 

remaining cooling load if the storage system discharge rate is less than the building cooling load 

whether renewable power is available or not. Also, the 20-year cost for the ice CTES systems is 
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slightly lower than for the equivalent stratified chilled water systems. This economic benefit is 

due, partially, to ice CTES system costs being lower than chilled water systems in this size range. 
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Figure 5-9. Solar resource Pareto fronts for the Secondary School with ice CTES for Texas 

(upper left), California (upper right), Wisconsin (lower left), and New York (lower right) 
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Figure 5-10. Wind resource Pareto fronts for the Secondary School with ice CTES for Texas 

(upper left), California (upper right), Wisconsin (lower left), and New York (lower right) 
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5.3.6 Results for Large Office Building with Ice CTES 

The Pareto front results for the Large Office building with an ice CTES system are 

displayed for the solar resource in Figure 5-11 and for the wind resource in Figure 5-12. The 

differences between these results and those for the Large Office building with stratified chilled 

water CTES are similar to those between the ice CTES and chilled water CTES cases for the 

Secondary School. Once again, the minimum chiller system part-load ratio is lower for the ice 

CTES system than for chilled water. The ice CTES curves are not as close to meeting 100% of the 

chiller energy with renewable power as the chilled water curves. 

One expected difference between the Large Office building and the Secondary School with 

respect to the variation between the two storage technologies is that the ice CTES system 20-year 

cost is generally higher than for the chilled water system. Since the Large Office building has over 

twice as much square footage as the Secondary School, it benefits from the increasing economies 

of scale associated with the chilled water system. 
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Figure 5-11. Solar resource Pareto fronts for the Large Office with ice CTES for Texas (upper 

left), California (upper right), Wisconsin (lower left), and New York (lower right) 
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Figure 5-12. Wind resource Pareto fronts for the Large Office with ice CTES for Texas (upper 

left), California (upper right), Wisconsin (lower left), and New York (lower right) 
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5.3.7 Results for Large Office Building with Ice CTES and Demand Charges 

For comparison purposes, the Large Office building with an ice CTES system is simulated 

with an additional electricity rate structure. This rate structure was introduced in Section 2.6.2 and 

it features a time-of-day dependent energy charge and seasonally-varying demand charges. The 

energy rates are significantly lower than either the on-peak or off-peak rates used in all of the 

results presented so far. The demand charge analysis is performed only for New York. 

For purposes of comparison, the 20-year cost results are not normalized since the two 

different rate structures result in two different normalizing costs. The Pareto front results for both 

sets of electricity rate structures are shown in Figure 5-13. The Pareto fronts on the left include 

energy charges only and are similar to the lower right plots in Figure 5-11 and Figure 5-12 except 

that the 20-year cost values are not normalized by the no-storage case with no renewable 

generation. Comparing the two plots in the top row and the two plots in the bottom row with each 

other, each renewable resource simulated with the two different electricity rates, it is clear that the 

rate with demand charges produces much higher 20-year costs. The primary reason for this cost 

difference is the magnitude of the electricity cost difference between a generally applied rate which 

is close to the US average and a rate that is applicable only to New York City. Another impact is 

the differing effects of net metering between the two electricity rates. With energy charges only, 

all renewable energy produced offsets the energy charge alone, but this is not the case with demand 

charges. Because there is typically at least one time-step in each month where the chiller system 

is operating at full load, but the renewable power output is close to zero, the renewable offset is 

not as great when demand charges are considered.  
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Figure 5-13. Solar (top) and wind (bottom) resource Pareto fronts for New York with energy 

charges only (left) and energy as well as demand charges (right) 
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5.3.8 Results for Large Office Building with Wind and Solar in Combination 

While this research considers the increasing deployment of renewable energy generation in the 

forms of solar and wind energy, thus far they have been studied independently of each other. The 

wind and solar resource profiles are plotted in  

Figure 2-1 and Figure 2-5. The solar resource profile obviously peaks close to the middle 

of the day and is non-existent before sunrise and after sunset. While the wind profile is more 

variable, for land-based turbines the resource is generally stronger at night than in the middle of 

the day (Hartman 2017). Since the profiles are approximately time shifted from one another, the 

addition of the two results in a more uniform renewable generation profile over each day. The 

more varied profiles used while considering each resource separately represent the extremes of 

only one resource or the other being utilized. Figure 5-14 shows an example week in the Texas 

region. The data used are from the month of July and the three scenarios plotted are the power 

output from 1 MWe of installed wind capacity, 1 MWe of installed solar capacity, and 500 kWe 

of each. Although the wind power output is incredibly variable, on the first, second, fifth, sixth, 

and seventh days, the strongest periods of wind power generation are clearly offset from the 

strongest solar power periods in the middle of the day. The thick, solid line, the profile of the 

combination of the two resources, still shows considerable variability throughout the week, but it 

is noticeably more uniform with lower peaks and far fewer periods of zero power output (5% of 

the time versus 20% for wind alone and 43% for solar alone).  
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Figure 5-14. Texas week in July showing 1 MWe of installed wind and solar capacity along with 

a combination of 500 kWe of each 

The results in this section focus on the Texas and California regions and the solar and wind 

combination is based on an even split between the two resources on the basis of installed capacity. 

The first two sets of plots are duplicates of those in previous sections, but they are presented here 

on consistent axes for purposes of comparison. Figure 5-15 shows the Pareto fronts for the solar 

resource, Figure 5-16 shows those for the wind resource, and Figure 5-17 shows the combination 

of the two resources. 
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Figure 5-15. Solar resource Pareto fronts for the Large Office with chilled water CTES for Texas 

(left) and California (right) 

 

Figure 5-16. Wind resource Pareto fronts for the Large Office with chilled water CTES for Texas 

(left) and California (right) 
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Figure 5-17. Combination solar and wind resource Pareto fronts for the Large Office with chilled 

water CTES for Texas (left) and California (right) 

Looking at the individual plots in comparison to each other, there are some notable 

differences between the two locations. Note that each figure shows Texas on the left and California 

on the right. Figure 5-15 shows that a CTES system in California operating in conjunction with 

the solar resource meets more of the chilling system’s energy consumption at a slightly lower 

life-cycle cost than is possible with the same combination in Texas. This result occurs because the 

solar resource in California is greater than for Texas. Figure 5-16 shows that the life-cycle cost is 

lower in Texas than in California when a CTES system is operated in conjunction with the wind 

resource, which is due to a stronger wind resource in the Texas data set. Finally, the case 

corresponding to 50% solar generation and 50% wind generation (by installed capacity) in Figure 

5-17 shows that a greater portion of the chilling system’s energy is met by the renewable resource 

in the combined no-storage case as compared to the solar or wind no-storage case. This result is 

due to the approximately inverted profile between the two resources with solar being strong in the 
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day and wind being generally stronger at night. As expected, the combined profile better matches 

the building cooling load profile than either profile individually. Still, utilizing a CTES system 

results in reduced life-cycle costs and increased utilization of renewable energy compared to a 

no-storage system. 

5.4 Model Predictive Control Optimization Results 

All of the results presented thus far are drawn from simulations utilizing either the 

Renewable Control or Cost Control strategy. When trying to minimize operating cost, the Cost 

Control strategy relies on an individual cut-off rate below which it is desirable to operate the chiller 

system. This approach is best suited to relatively simple electricity rate structures that have only 

an on-peak and off-peak rate in a given day. The rate structures presented in Section 2.6.3 fluctuate 

on an hourly and a single rate cut-off is not ideal for these structures. As the name implies, the 

hourly day-ahead rates are provided before the day begins and they attempt to predict the rate 

fluctuations that will occur due to factors such as changing electricity demand, power plant 

availability, and behind-the-meter distributed generation. While the fluctuations are significant 

compared to time-of-use rate structures, they typically under-predict the actual fluctuations in the 

real-time rates as shown in Section 2.6.3. While the results presented in this section use the Model 

Predictive Control strategy only to minimize cost rather than to maximize the utilization of 

renewables, the comparison of results with different rate structures provides a surrogate for the 

impact that could be expected with renewable resource profiles. For example, the effect of a 

varying wind resource profile is best represented by a real-time rate structure that motivates the 

consumer based on the perceived value of electricity as seen from the utility side.  In this way, 

strategies that minimize cost to the user also maximize the potential utilization of renewable 

resources. 



  156 

 

 

For these simulations, the assumed Large Office building location is in the vicinity of 

Central Park in New York City and the operation year is 2016. This location is within the NYISO 

region covering New York City for which the day-ahead and real-time electricity rates apply. 

There is no renewable generation capacity installed on-site and the defined beginning of each day, 

the time by which the storage system must be recharged, is 7 a.m. The Cost Control strategy uses 

the linearized chiller model presented in Section 2.5.5 in order to be more directly comparable to 

the Model Predictive Control strategy. The cooling loads and ambient conditions for chiller 

operation for both strategies are from 2016 historical weather data rather than TMY data, as 

described in Section 2.3. Using this historical weather data ensures that weather-related impacts 

on the day-ahead and real-time electricity rates are reflected in building cooling loads and chiller 

operating conditions for that time period. The weather data sets and electricity rates are reported 

on an hourly basis. The weather data is linearly interpolated between hourly observations while 

the electricity rates are assumed to be constant for the full hour. Weather is only one of many 

factors affecting rates, but there is a noticeable correlation between dry-bulb temperature and this 

particular day-ahead rate as shown in Figure 5-18. The rates are generally highest when 

temperatures are at the low and high extremes. Presumably, the low extreme temperature rates are 

due to electric heating demand and the high extreme temperature rates are due to cooling demand. 
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Figure 5-18. Correlation between 2016 NYISO real-time electricity rate and dry-bulb 

temperature (data from NYISO 2017b; White Box Technologies 2017) 

Building cooling loads developed using TMY weather data are sufficient for simulations 

using simple rate structures that have only on-peak and off-peak rates because those rates have 

general time windows which reflect the periods that generally see the highest and lowest demands. 

The utility system is expecting that there will occasionally be high electricity demand during 

off-peak windows and vice versa. This risk is built in to the rate structure. On the other hand, when 

the rates are day-ahead or real-time, it matters if there is a heat wave on Monday and Tuesday but 

the simulation sees one on Wednesday and Thursday. Outside of the weather impact, the effect of 

building occupancy is significant. The TMY datasets all start on Sunday, January 1st while 2016 

started on a Friday. Like most office buildings, the occupancy schedule varies significantly 

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20 30 40

E
le

ct
ri

c 
R

at
e 

[¢
/k

W
h
]

Dry-Bulb Temperature [°C]



  158 

 

 

according to the day of the week. The average occupancy over a 24-hour period for the Large 

Office building is 42% on weekdays, 15% on Saturdays and 0% on Sundays (USDOE 2011). Other 

commercial buildings in the utility system are likely to have similar occupancy schedules which 

results in higher weekday rates. Once again, a shift of a couple of days would make the simulation 

significantly less realistic. 

Since the Cost Control and Model Predictive Control strategies are operating with the 

objective of minimizing energy cost, they are compared on the basis of annual energy cost. Along 

with this comparison metric, the annual chiller system energy consumption is reported. Intuitively, 

the annual simulations resulting in the lowest annual energy cost should also have the lowest 

energy consumption, but the inverse relationship reported in this section shows the benefit of 

Model Predictive Control. The optimization algorithm chooses to operate the system in the manner 

that minimizes cost even if it is at the expense of increased energy consumption. 

5.4.1 Day-Ahead Electricity Rate Results 

Because the Cost Control strategy requires a single electricity rate cut-off value, varying 

this parameter in a parametric study is expected to yield the optimum value. Selected results of 

this parametric study are plotted in Figure 5-19 and show that for this particular day-ahead 

electricity rate, the cut-off that gives the lowest annual energy cost is 1.6 ¢/kWh. Below this value, 

the annual energy cost begins to rise due to an increase in the frequency of activation of the 

operating condition where, regardless of the electricity rate and operating conditions, storage 

charging must occur in order to recharge by the end of the day. This value will vary for other rate 

structures and even for the same rate structure in a different time period. In the limit that the cut-

off rate is adjusted more and more frequently throughout the simulation year it is expected that the 

cost control strategy will approach a more dynamic strategy like model predictive control. The 
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results presented here use the constant cut-off rate of 1.6 ¢/kWh for purposes of comparison to the 

Model Predictive Control strategy which considers only the rates in the control horizon when 

making control decisions. 

 

Figure 5-19. Annual energy cost by electricity rate cut-off for day-ahead electricity rate structure 

The simulation details and metric calculations are given in Section 4.2. For the day-ahead 

electricity rate structure, the annual simulations results are given in Table 5-2. The annual energy 

cost decreases by almost 11% when operating using the Model Predictive Control strategy versus 

Cost Control. At the same time, the annual chiller energy consumption increases by 3.6%. The 

average chiller part-load ratio is nearly identical between the two control strategies, but Cost 

Control operates more frequently at full load or idled. In contrast, the optimization algorithm 

utilized by Model Predictive Control chooses full-load and zero-load operation slightly less 

frequently in favor of part-load operation. This part-load operation is the primary explanation for 
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the increased energy consumption since the chiller system operates less efficiently to meet the 

same cooling load. In Section 5.4.2, an example two-day period for the real-time electricity shows 

increased part-load operation. The reasoning for the part-load chiller system operation is given in 

that section. 

Table 5-2. Annual simulation results for day-ahead electricity rates 

Control 

Strategy 

Rate 

Structure 

Rate Cut-Off 

[¢/kWh] 

Annual Energy 

Cost [$K] 

Annual Chiller Energy 

Consumption [MWh] 

Cost Control Day-Ahead 1.6 18.7 700 

Model Predictive 

Control 
Day-Ahead N/A 16.7 725 

 

 The electricity cost savings shown in Table 5-2 are the aggregated result of more than 

50,000 control decisions made over the year-long period. A two-day period at the end of May is 

used to illustrate the control decisions made by the Cost Control and Model Predictive Control 

strategies. For the day-ahead rate structure, the Cost Control decisions are plotted in Figure 5-20 

and the Model Predictive Control decisions are in Figure 5-21. Each 24-hour period begins at 

7 a.m. and the storage tank is constrained to be recharged by hour 24 and hour 48. The day-ahead 

electricity rate is reported on an hourly basis and varies between 0.8 and 2.8 ¢/kWh for this time 

period although it varies between 0.6 and 15¢/kWh over the year. The building cooling load in red 

and electricity rates in black are identical in both figures, but the chiller power and the resulting 

tank charge vary. The electricity rates are generally lower at night and they are higher during the 

first example day than the second. Because the cooling load is determined using historical weather 

data that aligns with the electricity rate data, it is also higher on the first day than the second. 
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Figure 5-20. Cost Control strategy example period using day-ahead electricity rates 

 

Figure 5-21. Model Predictive Control strategy example period using day-ahead electricity rates 

 

Rate Cut-Off 
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On the bottom plot of Figure 5-20, the electricity rate cut-off for the Cost Control strategy, 

1.6 ¢/kWh is shown as a dotted green line. During this two-day stretch, the chiller is never running 

when the rate is above this cut-off value as indicated by the time periods encompassed by the 

dashed blue line. While the Cost Control strategy operates the chiller system only during low-

electricity-cost periods, the Model Predictive Control strategy does better by seeking out the 

lowest cost periods in the 24-hour control horizon. For example, both strategies manage to 

recharge the storage tank by hour 48, but the Cost Control strategy in Figure 5-20 starts recharging 

four hours earlier when the rates have not yet reached their minimum. In aggregate, similar 

behavior throughout the year leads to the significant cost reduction provided by the Model 

Predictive Control strategy. 

5.4.2 Real-Time Electricity Rate Results 

For the real-time electricity rate structure presented in Section 2.6.3, the optimum cut-off 

rate for the Cost Control strategy is lower than it is for the day-ahead rate structure. Selected 

simulations are plotted in Figure 5-22 and they show that 1.1 ¢/kWh is the optimum cut-off rate. 

The results presented in this section for the Cost Control strategy use this constant cut-off value. 



  163 

 

 

 

Figure 5-22. Annual energy cost by electricity rate cut-off for real-time electricity rate structure 

The results for both control strategies and both electricity rates are given in Table 5-3. They 

are grouped by control strategy to highlight the impact of the rate structure. Focusing on the first 

two rows showing the Cost Control results, the annual energy cost increases by over 17% when 

subject to the real-time rate structure instead of the day-ahead one. The annual chiller energy 

consumption remains approximately constant. In contrast, for the Model Predictive Control 

strategy, the annual energy cost remains approximately constant and the chiller energy 

consumption decreases slightly. Both rates have the same mean value, but the real-time rate has a 

standard deviation that is two-and-a-half times as large as that for the day-ahead rate. The median 

for the real-time rate is also lower than it is for the day-ahead rate. The real-time rate is the more 

volatile as evidenced by the standard deviation. The day-ahead rate under predicts the peaks and 

valleys in the eventual real-time rates, but the magnitude of the under-prediction of the peaks is 
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greater as evidenced by the lower median in the real-time rates. Comparing the two control 

strategies for the real-time rate, Model Predictive Control results in a 24% energy cost reduction 

from the Cost Control strategy. The energy cost reduction for the day-ahead rate structure 

presented in the previous section is 11%. These results show that the Model Predictive Control 

strategy has a distinct advantage over more traditional control strategies when the inputs have 

greater variability. Conversely, when inputs are easily predicted and have little variability, the 

strategy is expected to provide little advantage and may justify the added control system 

complication. 

Table 5-3. Annual simulation results for day-ahead and real-time electricity rates 

Control 

Strategy 

Rate 

Structure 

Rate Cut-Off 

[¢/kWh] 

Annual Energy 

Cost [$K] 

Annual Chiller Energy 

Consumption [MWh] 

Cost Control Day-Ahead 1.6 18.7 700 

Cost Control Real-Time 1.1 21.9 700 

Model Predictive 

Control 

Day-Ahead 
N/A 16.7 725 

Model Predictive 

Control 

Real-Time 
N/A 16.7 723 

 

Day-ahead and real-time rates are plotted together in Figure 5-23. For this particular time-

period, the two rates follow the same general trend throughout the day, but the real-time rate 

exhibits greater extremes and hour-to-hour variation. With respect to the Model Predictive Control 

strategy, there are two notable discrepancies between the two rates. The first occurs at hour 25 

when the day-ahead rate continues to increase, but the real-time rate drops significantly for an 

hour. If the strategy is using the day-ahead rate as an input, but the real-time rate is being charged, 

it is likely that the first portion of this reduced rate period will be missed by the chiller system 

operation. Because the timestep is only ten minutes long and the rate changes on an hourly basis, 
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the updated rate can be fed back into the optimization algorithm to be able to take advantage of 

the rate in subsequent timesteps. The second rate discrepancy occurs at hour 41 when the 

day-ahead structure predicts a decreasing rate, but the real-time rate behavior is much more drastic. 

At hour 43, the real-time rate actually goes negative. In this case, the Model Predictive Control 

algorithm is likely planning to activate the chiller system during this time period, so the negative 

rate will be fully exploited. 

 

Figure 5-23. Day-ahead and real-time electricity rates for a two-day example period 

Control decisions for the same example two-day period used for the day-ahead rate are 

plotted in Figure 5-24 and Figure 5-25 for the real-time electricity rate. Focusing on the first 

24-hour period, both control strategies take advantage of the two lowest rate periods at hours 17 

and 21. The Cost Control strategy (shown in Figure 5-24) operates the chiller system at full load 

as soon as the rate drops below the cut-off of 11¢/kWh (shown as a dotted green line) at hour 16. 

It also idles the system at the end of the second low-rate period because the storage tank has 

become fully recharged and there are no building cooling loads to be met. Once the cooling loads 

commence, the chiller system runs at full load for a short time even though the rate is above the 

cut-off value. This is necessary in order to fully recharge the storage tank by the beginning of the 

next 24-hour period. In contrast, the Model Predictive Control strategy leaves the chillers running 
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throughout the final hours of the first day. Once the storage tank has been fully recharged, the 

chiller system is run at a part-load ratio sufficient to just meet the cooling load. This means that 

during the higher-rate period at the end of the 24-hour period, the chiller system is consuming as 

little power as possible in order to meet the storage tank recharge constraint in addition to the 

cooling load. This is a good example scenario to explain the increased annual energy consumption 

for the Model Predictive Control strategy over the Cost Control strategy. While both strategies 

meet the cooling load and recharge the storage tank, Model Predictive Control uses 3% more 

energy to do so due to more frequent part-load operation.  
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Figure 5-24. Cost Control strategy example period using real-time electricity rates  

 

Figure 5-25. Model Predictive Control strategy example period using real-time electricity rates 

Rate Cut-Off 
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The second 24-hour period in Figure 5-24 and Figure 5-25 demonstrates the advantage of 

Model Predictive Control well. The Cost Control strategy activates the chillers when the rate drops 

below the cut-off in hour 25. The storage tank quickly recharges and the chiller system can only 

operate at a part-load ratio sufficient to meet the building cooling loads. Toward the end of the 

second day, when the cooling loads have disappeared, both control strategies take advantage of 

low-rate periods. The Model Predictive Control strategy in Figure 5-25 has the foresight to wait 

to activate the chillers until the rate has become negative. For this particular day, the electricity 

cost ends up being ten times greater for the Cost Control strategy, a difference of over $26. 

The results presented in this section confirm the financial benefits of the Model Predictive 

Control strategy especially when electricity rates vary significantly and on short timescales. While 

these results only consider minimization of the electricity costs, there is an analog to maximization 

of the renewable resource utilization. In particular, the wind resource is quite variable and in many 

locations, there are highly time-resolved wind forecasts which can be used as an input to the Model 

Predictive Control strategy. 

5.5 Aggregate Renewable Control Impact on Utility Systems 

All of the Pareto fronts presented in the parametric study results in Section 5.3 are for a 

single Secondary School or Large Office building taking advantage of net metering policies with 

solar or wind power generation equipment installed. The 20-year cost shows the approximate net 

economic impact on the building owner and the chiller energy met by renewable gives an idea of 

how a particular CTES or no-storage system would impact the utility system of which the building 

is a part. In order to forecast how these storage strategies could impact utility systems, the 

individual parametric study results are aggregated over the population of buildings present in a 

region. 
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Each Secondary School and Large Office building in the particular region is assumed to be 

identical to the Commercial Reference Building modeled. The buildings are modeled both without 

CTES as well as with a CTES system utilizing Renewable Control and the results are multiplied 

to obtain the aggregate results. Ice CTES is employed for the Secondary School and stratified 

chilled water for the Large Office building since these options result in the lowest cost systems 

due to economies of scale for the chilled water tanks. The parameters used for the storage case are 

consistent with the inflection point of the Pareto front, i.e. the point that has minimal cost 

difference from the lowest cost point but achieves significantly greater renewable energy 

utilization. Each of the buildings is assumed to be equipped with solar or wind generation capacity 

that is equal to the full-load chiller power for the no-storage case.  

Table 5-4 shows the parameters used to aggregate the individual facility data. With the 

exception of Wisconsin, each of the states considered are completely or nearly completely covered 

by the respective independent system operator (ISO). For Texas this is the Electric Reliability 

Council of Texas (ERCOT), for California it is the California Independent System Operator 

(CAISO), and for New York it is the New York Independent System Operator (NYISO). System 

electric load data is publicly available through the Energy Information Administration (EIA) and 

each of these three states are approximated as overlapping the ISO region (EIA 2017b). Wisconsin 

is part of the Midcontinent Independent System Operator (MISO) which covers parts of 16 

different states and a Canadian province. Electric load data are publicly available for the MISO 

region and the portion attributed to Wisconsin is allocated by population. 

The number of Secondary Schools in each state is data available through the National 

Center for Education Statistics (High-Schools.com 2013). The EIA performs an intermittent 

Commercial Building Energy Consumption Survey and the most recent one was conducted in 2012 
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(EIA 2012). The data is collected by census region and broken down by principal building activity 

as well as building square footage. The number of Large Office buildings listed in Table 5-4 comes 

from an analysis of these data. 

The day of the year used for the duck curve, shown previously in Figure 1-3, is March 31st. 

Using this date highlights the CAISO issue with solar over-generation because the state typically 

has significant solar resource at this time of year, but cooling loads have not yet reached their peak. 

To see the aggregate impact of CTES, a day with high peak load can be used to highlight the 

differences between the no-storage and storage system cases. The chosen days are all within the 

recent past and listed in the last column of Table 5-4. 

Table 5-4. Aggregation parameters for all four geographic locations (data from High-

Schools.com 2013, EIA 2012, and EIA 2017b)  

Location ISO

No. of 

Secondary 

Schools

No. of Large 

Office 

Buildings

Peak Load Date 

Used

Texas ERCOT 3,709 651 August 10, 2015

California CAISO 4,495 756 September 10, 2015

Wisconsin MISO 885 232 September 1, 2015

New York NYISO 2,167 1,143 July 19, 2013  

The hourly load profile for each ISO on the peak date provides a basis for observing the 

impact of installing additional solar and wind generation capacity as well as the chiller electricity 

consumption for buildings with both no-storage and Renewable Control storage systems. This load 

profile is shown as a solid black line in Figure 5-26 for the ERCOT region, Figure 5-27 for the 

CAISO region, Figure 5-28 for the state of Wisconsin, and Figure 5-29 for the NYISO region. 

Each figure shows the impact of the solar resource in the top row and the wind resource in the 

bottom row. The shaded area in the left-most plots shows the net load the utility system must meet 

after solar or wind generation capacity is installed for every Secondary School and Large Office 
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building. The capacity installed for each building is equal to the no-storage full-load chiller power. 

While the impact of the solar energy generation is predictably felt during the middle of the day, 

the impact of the wind varies and does not necessarily follow the trend stated several times 

throughout this dissertation that the resource is strongest at night. These plots represent a single 

day, so the profile and magnitude may not be indicative of the general behavior of the renewable 

resource. 

The shaded area in the middle plot in each row shows the net sum of subtracting the solar 

or wind generation (as in the left-most plot) and adding back the no-storage chiller power 

consumption for all of the buildings shown in Table 5-4. The chiller power consumption adds to 

the peak load as evidenced by the shaded areas above the solid black line. In several cases, there 

is renewable power generated close to the peak hour and the no-storage chillers consume that 

renewable generation and more. This is true for the wind resource in CAISO shown in the bottom 

row of Figure 5-27 as well as the solar resource in NYISO shown in the top row of Figure 5-29. 

Some of the discontinuities seen in the shaded area profile are due to the intermittent nature of the 

renewable resource and some are due to the sudden transition in performance when switching 

between operation of one to two chillers or vice versa. 

The right-most plot in each row shows a similar profile to the middle plot, but the buildings 

now have a Renewable Control storage system rather than a no-storage system. In all eight cases, 

these systems produce a change in the utility net load profile indicating it would be more desirable 

to the utility system than the one produced by the no-storage case. Without looking at the shape of 

the profile, each of the storage systems meets the same cooling load with significantly less chiller 

electricity consumption. Using the wind resource in the bottom row of the ERCOT plots in Figure 

5-26 as an example, the wind resource in the left plot is not particularly strong on this day, but the 
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slight resource present is strongest during the early morning and late evening hours. The middle 

plot shows that the no-storage case buildings utilizes some of the wind power around 6 a.m., but 

the primary impact of the no-storage system is to add to the peak load that occurs around 5 p.m. 

In the right plot showing the impact of the storage system, much of the wind power produced in 

the early morning is used by the chillers and the overall utility system peak is not increased in the 

afternoon. While this representation does not provide an annually integrated quantitative measure, 

it allows for a visual observation of the storage system benefits in a manner that is similar to that 

used by the duck curve. 



  173 

 

 

 

Figure 5-26. Peak ERCOT load minus renewable (left), minus renewable plus no-storage 

(middle), and minus renewable plus Renewable Control CTES for solar (top) and wind (bottom) 
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Figure 5-27. Peak CAISO load minus renewable (left), minus renewable plus no-storage 

(middle), and minus renewable plus Renewable Control CTES for solar (top) and wind (bottom) 
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Figure 5-28. Peak WI load minus renewable (left), minus renewable plus no-storage (middle), 

and minus renewable plus Renewable Control CTES for solar (top) and wind (bottom) 
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Figure 5-29. Peak NYISO load minus renewable (left), minus renewable plus no-storage 

(middle), and minus renewable plus Renewable Control CTES for solar (top) and wind (bottom) 
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Comparing points (1) and (2) in the lower right-most plots of Figure 5-29, the storage 

system reduces the system peak load by approximately 2 GW when applied to each of the 

secondary schools and large office buildings in the NYISO region. This method of calculating the 

potential peak load reduction is considered a “bottom-up” approach whereby the total reduction is 

calculated by summing individual simulation results.  

Another method for determining the potential aggregate impact is a “top-down” approach 

which has been defined in a study by NREL (NREL 2012). The approach involves identifying a 

summer base load day using historical weather data and comparing it to the system load on the 

peak summer day. The assumption is that the difference between these two days is primarily due 

to electricity used for cooling. The cooling load associated with this method includes all cooling – 

commercial, residential and industrial. Using this approach for the NYISO region in the summer 

of 2013, the electric demand associated with cooling loads is estimated to be 14 GW or 41% of 

the peak load as shown in Figure 5-30 (EIA 2017b). This is compared to the 2 GW identified using 

the bottom-up approach. Results for the top-down approach for the CAISO region in 2016 estimate 

a total of 20 GW of potential peak demand reduction or 43% of the peak electric demand (CAISO 

2017). The ERCOT region in 2016 shows 34 GW of potential peak reduction or a full 48% of the 

peak demand. The top-down approach plots for CAISO and ERCOT are shown in Figure 5-31 and 

Figure 5-32, respectively. While not all of this cooling load-associated electric demand has the 

potential to be shifted using thermal energy storage, the top-down approach provides an upper 

bound and shows that there is significant potential peak reduction beyond that identified using the 

bottom-up approach. 
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Figure 5-30. NYISO top-down estimate of total cooling load (data from EIA 2017b) 

 

Figure 5-31. CAISO top-down estimate of total cooling load (data from CAISO 2017) 
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Figure 5-32. ERCOT top-down estimate of total cooling load (data from ERCOT 2017) 
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storage would be valued at between $500/kWe and $2,300/kWe for most of the country and up to 

$4,800/kWe in New York City. 

Pierpoint performed a review of the capital costs associated with several types of energy 

storage technology (Pierpoint 2016). The costs are reported on two separate bases: a per power 

output basis ($/kWe) and a per energy output basis ($/kWh). The power output is the instantaneous 

charge or discharge rate of the storage technology while the energy output is the total quantity of 

energy that can be stored regardless of the charge or discharge rate. The results of the study are 

shown along these two dimensions in Figure 5-33. The most expensive technology considered is 

lithium-ion battery storage followed by pumped hydroelectric storage. Compressed air and 

hydrogen energy storage are both relatively inexpensive, but suffer from low roundtrip 

efficiencies. The information shown in Figure 5-33 for CTES systems is based on the simulations 

performed for this research. While the capital cost per unit energy output is similar to compressed 

air and hydrogen energy storage technologies, the cost per unit power output (or reduced power 

consumption in the case of CTES) is significantly lower than any competing technology. 

Each of the non-CTES storage technologies plotted are those which discharge electricity 

after the systems have been charged. For CTES, the electricity is stored indirectly in the form of 

thermal energy as it allows the displacement of end-use electricity demand and consumption from 

one part of the day to another part of the day. The range of CTES capital cost values shown is 

primarily due to capital cost differences between ice and chilled water. The lower end comes from 

a chilled water system on the Large Office building and the upper end comes from ice CTES also 

on the Large Office building. The cost of the CTES system is calculated by subtracting the cost of 

the no-storage chiller system from the sum of chiller and CTES systems. To calculate the cost per 

unit power output, the full-load power of the CTES system chiller is subtracted from the same for 
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the no-storage system. This value is the peak “power output” of the CTES system and the storage 

system cost is divided by this value to get the capital cost per power output. To calculate the capital 

cost per energy output ($/kWh), an average coefficient of performance must be assumed. Based 

on the performance curves presented in Section 2.5, the assumed coefficient of performance is 5.0 

for stratified chilled water CTES and 4.0 for ice CTES. The storage system cost is divided by the 

storage tank thermal capacity in units of kWh. To convert the thermal kWh units to the electric 

units needed for the comparison, the value is multiplied by the assumed coefficient of performance 

to give the capital cost per energy output ($/kWh). 
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Figure 5-33. Energy storage technology capital cost comparison (data from Pierpoint 2016, 

Schoenung 2011, Tesla Motors 2016) 

In addition to the direct capital cost comparison presented in Figure 5-33, it is important to 

compare the storage technologies on the basis of roundtrip efficiency, siting considerations, and 

other advantages and disadvantages. This comparison is shown in Table 5-5. 
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Table 5-5. Energy storage technology attributes (all but CTES and efficiency data from Gençer 

& Agrawal 2015; efficiency data from Pierpoint 2016) 

Energy 

Storage 

Technology 

Approximate 

Roundtrip 

Efficiency 

Siting 

Considerations 
Advantages Disadvantages 

Cool Thermal ≥100% Requires close 

proximity to 

cooling loads and 

associated cooling 

equipment 

Mature technology, 

inexpensive, 

directly counteracts 

air conditioning 

loads 

De-centralized 

control of storage 

systems, less 

flexible than 

electricity-based 

storage, improper 

operation can result 

in unmet cooling 

loads 

Pumped 

Hydroelectric 

80% Requires varied 

topography  

Mature and large 

economies of scale 

Environmental 

impact of damming 

rivers and creating 

reservoirs 

Lithium-Ion 

Battery 

80% Minimal, but 

reactivity and 

flammability must 

be taken into 

account 

Flexible scaling, 

costs continually 

declining 

14-year lifespan to 

80% capacity, end-

of-life disposal is 

an environmental 

concern, depends 

on inexpensive 

supply of materials 

that are not mined 

domestically 

Compressed 

Air 

50% Cost-effective 

installations require 

specific geologic 

formations 

underground 

Large-scale, 

inexpensive 

Immature 

technology, low 

efficiency, natural 

gas used emits 

greenhouse gases 

Hydrogen 35% Cost-effective 

installations require 

specific geologic 

formations 

underground 

Inexpensive, long 

storage periods 

without further loss 

of efficiency 

Very low efficiency 
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The second column indicates the approximate roundtrip efficiency for the storage 

technology (Gençer & Agrawal 2015). Calculation of the roundtrip efficiency for CTES requires 

a baseline other than the electrical energy originally stored. The system initially produces and then 

stores cold water to be circulated when the building experiences cooling loads. The baseline for 

the efficiency calculation is therefore the chilling system’s electric consumption required to meet 

those cooling loads with a no-storage system. Because chillers exhibit lower performance both 

when outdoor temperatures are high in the middle of the day as well as when they are operating at 

less than their full-load capacity, chillers generally consume more electricity when directly 

meeting cooling loads than they do when operating in conjunction with a CTES system. The 

systems with CTES allow chillers to operate at their full capacity and during more hours outside 

of the hottest hours of the day. This means that less electricity is consumed to meet the same 

cooling loads with a CTES system and while there are thermal losses, they are typically more than 

offset by the chiller electric savings (Reindl et al. 1995). As a result, chilled water CTES systems 

are capable of achieving roundtrip efficiencies greater than 100%.  

In order to account for the impact of roundtrip efficiency on the life-cycle cost, the capital 

cost per unit energy values are normalized by the fractional roundtrip efficiencies in Figure 5-34. 

This plot is similar to that in Figure 5-33 except that all of the capital cost per unit energy values 

are greater than or equal to those values that don’t account for the roundtrip efficiency. Those 

storage technologies with low roundtrip efficiencies such as hydrogen show a significant increase 

in the adjusted capital cost per unit energy on the ordinate while CTES, pumped hydroelectric, and 

lithium-ion battery storage technologies are not affected significantly.  
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Figure 5-34. Comparison of energy storage technology capital cost normalized by roundtrip 

efficiency (data from Pierpoint 2016, Schoenung 2011, Tesla Motors 2016) 

Siting considerations are a significant factor in selecting storage technologies and the siting 

flexibility for lithium-ion battery installations is one reason that they have been gaining in 

popularity (Pierpoint 2016). As seen in Figure 5-33, pumped hydroelectric, compressed air, and 

hydrogen energy storage are all relatively inexpensive. While compressed air and hydrogen can 

be stored in above-ground tanks, the most cost-effective and largest scale installations use 

underground storage features which must be able to withstand cyclic pressure changes over time. 

For both of these two technologies as well as pumped hydroelectric storage, a specific topography 
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is required: underground salt formations or aquifers and varied elevation, respectively. These 

topographical features are not always located adjacent to the largest population centers where 

energy storage provides the greatest value. 

Siting for CTES systems is not as limited as those technologies that require specific 

topography, but it is also not as flexible as it is for lithium-ion battery systems. Close proximity to 

buildings with large cooling loads is desirable for the best economies of scale. Fortunately, the 

ability to shift electric demand is most valuable in close proximity to the large cooling loads 

associated with high population density and electric demand due to air-conditioning loads. The 

potential number of sites is limited by the total number of buildings with cooling systems. The 

upper bound for the amount of electricity that could be shifted for all cooling loads is given in 

Figure 5-30 through Figure 5-32 for the NYISO, CAISO, and ERCOT regions. 

Some advantages and disadvantages of the storage technologies presented are listed in the 

last two columns of Table 5-5. One of the differentiating advantages relates to system scale. While 

pumped hydroelectric, compressed air, and hydrogen energy storage are all significantly more 

cost-effective when implemented on a large scale, CTES is commonly implemented on a small 

scale for a single school or a larger scale for a campus district system. While there are cost 

differences between the system capacities, smaller systems can be made up of several modular, 

standard units which reduces the engineering cost for the system. Lithium-ion batteries are the 

most flexible in terms of system scale, but larger systems require that more attention be paid to 

reactivity and flammability hazards. 

The disadvantages vary, but three relate to negative externalities associated with the 

technology. Pumped hydroelectric energy storage projects result in negative environmental 

impacts on the area flooded by reservoirs. For compressed air energy storage, all designs currently 
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in use require natural gas in the storage discharge process which results in the emission of 

greenhouse gases. With daily cycling, lithium-ion batteries last approximately 14 years or 5,000 

cycles at which point the storage capacity is estimated to be 80% of the original capacity 

(International Renewable Energy Agency 2015). While lifespans vary for the other storage 

technologies, all have longer lifetimes than lithium-ion batteries. CTES and pumped hydroelectric 

energy storage systems in particular have demonstrated their ability to function for decades with 

little longitudinal degradation in their performance. 

5.7 Value of Energy Storage to the Grid 

The capital cost per unit of power output presented for CTES in Section 5.6 is relatively 

consistent with a published range from the Electric Power Research Institute (EPRI). The range 

calculated through this research is $130 to $1,120/kWe while the published range is $330 to 

$1,350/kWe (EPRI 2008). The average annual electricity market value of energy storage is 

$72/kWe according to a compilation of several studies (NREL 2013b). 

As a method of verifying the value of energy storage, there are several utilities providing 

upfront financial incentives for the installation of CTES systems. The incentives considered here 

range from $875/kWe for Pacific Gas and Electric and Southern California Edison in California 

down to $350/kWe for Austin Energy in Texas (PG&E 2015; Austin Energy 2017). Both Florida 

Power and Light in Florida as well as Consolidated Edison in New York offer $600/kWe (FPL 

2015; Con Edison and NYSERDA 2014). These incentives often come with a cap of 50% of the 

total system cost. To compare these values to the annual $72/kWe value above, a simple payback 

calculation shows that the utilities recover the incentive cost in approximately 5 to 12 years. This 

range is well below the expected lifetime of the thermal storage system. 



  188 

 

 

The time period covered by the energy storage value studies extends from 1997 to 2011, 

so the applicable level of grid penetration by solar and wind power is at most 5% (EIA 2017a). 

Due to the intermittent nature of these two renewable resources, it is expected that with higher grid 

penetration levels, the economic value of energy storage would increase. Another study performed 

by NREL investigates the impact of wind and solar generation on the value of energy storage 

(NREL 2013a). A case study in Colorado shows that increasing the wind and solar penetration 

level from 20% to 50% increased the value of energy storage by approximately 35%. While there 

are many factors that affect the local value, the previous annual estimate of $72/kWe would 

increase to $97/kWe under these conditions. While a wind and solar penetration level of 50% 

seems high, both New York and California have codified goals of 50% renewable generation by 

the year 2030. The NREL study considers a baseline wind and solar penetration level of 20% 

which is well above the level (5% or lower) at the time of studies done to determine the value of 

energy storage. While energy storage will generally become increasingly valuable with increasing 

wind and solar penetration, storage which is capable of directly responding to the local resource 

profiles will be more valuable to the utility systems. 

5.8 Policy Recommendations 

While not as widespread as state regulatory mandates to increase renewable energy 

production, several states have or are currently considering energy storage policies or programs 

(Maloney 2017). This section focuses specifically on the CAISO and ERCOT regions. These two 

locations were chosen to demonstrate the impact potential of energy storage as a consequence of 

the large populations and electric demand coverage as well as their high level of wind and solar 

resources. 
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Under Assembly Bill 2514, in 2013 the California Public Utilities Commission (CPUC) 

established an energy storage procurement target for the state’s three investor-owned utilities. By 

the year 2020, the utilities are mandated to procure a combined total of 1,325 MW of both utility-

scale and distributed energy storage (CPUC 2013). The stated reasons for adopting this energy 

storage goal are to achieve peak demand reduction, improved grid reliability, deferment of 

transmission and distribution investments, increased renewable energy integration, and reductions 

in associated greenhouse gas emissions. Additionally, Senate Bill 700 was sent to the California 

State Assembly after passing in the State Senate and it is scheduled to be debated in 2018 (Andorka 

2017). In contrast to Assembly Bill 2514, this energy storage bill would provide rebates to end-

use customers who install their own energy storage systems. Because the program is specified to 

run for ten years, the rebates are intended to drive installation of energy storage to achieve the 

above-mentioned benefits while also stabilizing energy storage system costs. 

The legislative landscape for energy storage in Texas is less ambitious, but some legislation 

has been passed to improve energy storage economics at the utility scale. In 2011, Texas Senate 

Bill 943 served to classify energy storage installations as “generation assets” (Texas Legislature 

2011). This classification gives the storage assets the right to interconnect, obtain transmission 

service, and to sell electricity in the wholesale market. The improved economics come from 

assigning the interconnection costs of the storage systems to the transmission companies as 

opposed to the power generation companies installing the energy storage facilities (NREL 2014). 

One way to meet energy storage procurement targets is to incentivize the installation of 

energy storage systems. An example of a recently implemented energy storage incentive program 

is in Orange County, California. Southern California Edison (SCE) has contracted more than 250 

MW of various forms of energy storage in order to meet the target established by California Public 
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Utilities Commission policy (CPUC 2013). Approximately 25 MW of the storage capacity is in 

the form of cool thermal energy storage (Guess 2017). In this case, the decision was made to deploy 

a large number of small capacity unitary ice CTES units rather than fewer higher capacity CTES 

systems that utilize larger-scale ice storage or stratified chilled water storage tanks of the type 

considered in this research. SCE is purchasing the unitary ice storage systems for installation on 

the roofs of selected commercial buildings. In exchange for the thermal storage equipment and 

installation, the end-use customer allows the utility to actually control the storage system, 

presumably using a control strategy that is similar to the Renewable Control strategy. The unitary 

CTES systems can be controlled so that they charge during the peak solar production period in the 

middle of the day or, with significant wind power generation, during the off-peak periods at night. 

They would then be discharged in order to cool the buildings during the peak demand hours that 

occur in the late afternoon or evening. While operation of the CTES units will allow SCE to level 

the impact of intermittent renewable generation and reduce its peak electric demand, it will also 

reduce the end-customers’ electricity bills. Energy charges will be reduced since a greater portion 

of the electricity used to cool the buildings will be consumed outside of the peak hours and any 

demand charges will be reduced along with the peak chilling system electric demand. One 

significant challenge for this type of program is the large number of units required and the 

associated overhead to operate the units in order to achieve meaningful impact.  Installing larger 

ice or chilled water storage systems provides greater storage capacity at each customer site which 

would maximize the ratio of the storage benefit to the program overhead cost. 

Policies that shift the capital expense burden from end-customers to utilities are highly 

recommended when they reduce or eliminate barriers to entry for new CTES installations. While 

CTES systems controlled by the utility may be desirable from a utility perspective (as it aims to 
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coordinate load management associated with intermittent renewable generation sources), the 

end-customer is saddled with the risk that building cooling loads may not be met. In order for 

end-customers to adopt CTES technology, they should have the option of controlling their own 

systems. To encourage control strategies that benefit the utility, hourly day-ahead electricity rate 

structures should be implemented which greatly penalize the end-customer for chiller electricity 

consumption during periods of low renewable resource availability and high aggregate electric 

demand. This type of policy and associated rate structure will provide useful distributed storage 

capacity to the utility that will be widely adopted due to low upfront costs and the ability to 

maintain system control by the end-customer. 

The increasing need for energy storage systems for both peak shaving and intermittent 

renewables integration has been acknowledged by both utilities and the market. Market research 

estimates 2017 energy storage installations at 6 GW and predicts that by 2022 the annual installed 

capacity will reach more than 40 GW (Energy Storage Association 2017). This is up from just 

0.34 GW installed globally in 2013. Lithium-ion battery storage has received significant publicity 

and the term is sometimes used synonymously with the term “energy storage.” While costs 

continue to decline, the issues of a relatively short life cycle and end-of-life disposal are significant 

and may not be fully understood or addressed until they are experienced on a large scale. In 

addition, increasing demand for lithium-ion batteries in electric and hybrid vehicles will increase 

demand and, as a result, their costs. Meeting energy storage needs will require implementation of 

various technologies at all scales. Several energy storage technologies can succeed simultaneously 

for different applications similar to the example of solar power being generated on a utility scale 

by concentrating solar power plants and on a smaller scale by photovoltaics. 
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The only two distributed energy storage technologies considered in Section 5.6 are the two 

that currently have any significant market presence, lithium-ion batteries and cool thermal energy 

storage. Considering the system cost and life expectancy advantages that CTES has over 

lithium-ion batteries, it is logical that policies emphasizing the deployment of CTES should be 

implemented before lithium-ion battery systems are considered as the primary method to integrate 

renewables into the electric grid. As states and utilities are developing energy storage policies and 

incentive programs, explicit inclusion of this technology makes sense from all perspectives. 

6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 Conclusions 

Cool thermal energy storage control strategies are presented that have the objective of 

increasing the penetration of renewable energy resources while minimizing their impact on the 

grid as well as reducing operating costs. The Renewable Control strategy seeks to maximize the 

proportion of chilling system electricity consumption available from renewable energy resources 

and the Cost Control strategy seeks to minimize the electricity costs associated with chiller 

operation for building space conditioning. These control strategies were implemented in annual 

simulations for two different building types covering four geographic regions. Each combination 

of building type and location were simulated using both stratified chilled water and internal-melt 

ice CTES systems. As a baseline comparison, simulations were also run for direct chiller systems 

without storage. The two metrics used to evaluate system performance for these parametric studies 

are the total 20-year cost and the fraction of the chiller energy met by the renewable resource.  

The cost metric is more likely to determine whether the storage systems and the associated 

control strategies are implemented are not. The results of this research show that reduction of 
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20-year cost is possible with either type of storage control strategy over a wide range of system 

parameters compared to equivalent systems without storage. Not surprisingly, there are increased 

costs associated with a control strategy that has the explicit objective of utilizing the renewable 

resource (Renewable Control) compared to one that aims to reduce operating costs (Cost Control). 

This observation indicates that the time-of-use rate structure applied does not incentivize 

electricity consumption during periods of high renewable resource availability and vice versa. 

Like Cost Control, the Model Predictive Control strategy aims to minimize electricity 

costs, but does so more effectively by utilizing optimization algorithms. Simulations run using this 

strategy showed significant savings are possible through true optimization and these savings are 

positively correlated with the variability of the control inputs.  Real-time and day-ahead pricing 

structures that more accurately link cost to renewable energy utilization are particularly volatile 

and this work shows that it is important to use a dynamic optimization technique like Model 

Predictive Control in order to take advantage of this cost structure.  

The vast majority of existing chilled water-based building cooling systems do not have any 

CTES component. Both new facilities and existing facilities can be fitted or retrofitted with CTES 

systems. In most cases, the life-cycle cost savings associated with the CTES system can provide 

sufficient financial incentive to install a system and several utility systems supplement this 

incentive with upfront load-shifting incentives. In order to provide additional incentive to operate 

with the objective of maximizing renewable resource use, electric utilities should provide further 

upfront incentives and/or special electricity rate structures to encourage greater penetration of 

CTES systems utilizing this mode of operation. 

The most important outcome of this research is demonstrating that the portion of the chiller 

energy met by renewable generation can be significantly improved by implementing a control 
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strategy that aims to better utilize the renewable resource. Further improvements can be realized 

by implementing Model Predictive Control strategies. Buildings equipped with CTES and 

appropriate chilling system control strategies enabled an increase in renewable energy utilization 

that ranged from 10% to more than 50% compared to non-storage cases with very little increase 

in operating cost. Further improvements can be achieved as the chiller system and cool thermal 

energy storage system capacities are increased beyond their minimums, but this improvement 

comes at substantial added cost. In practice, the best operation point is one that keeps the 

equipment sizes at close to a minimum, but aims to utilize the renewable resource using system 

parameters that accommodate the renewable resource profile and the storage technology. This 

point provides benefits to the utility system in terms of utilizing the renewable resource, but at 

little added 20-year cost.  

To demonstrate this point with an example, consider the California region with the solar 

resource that is the primary driver for the duck curve. Table 6-1 shows the chiller system utilization 

of the solar and wind resources as well as comparisons between a system without storage and one 

operating using the Renewable Control strategy. From this comparison, a simple payback time 

period has been calculated. Each system has a solar PV or wind turbine system installed with a 

rating equal to the full load chiller power without storage. This example shows little variation in 

system fixed costs along with annual operating cost savings with a storage system, so the simple 

payback time period is very short. Additionally, the renewable resource has been utilized to meet 

a greater fraction of the chiller energy. This is just one example, but the benefits are similar across 

locations, building types, and CTES technologies. 
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Table 6-1. Example Renewable Control results for California 

Renew-

able 

Resource 

Building 

Type 

Storage 

Type 

Chiller Energy 

Met by Solar [-] 

First Cost 

[$MM] 

Annual Operating 

Cost [$MM] 
Simple 

Payback 

[months] 
No-

Storage 
Storage 

No-

Storage 
Storage 

No-

Storage 
Storage 

Solar 

School Ice 0.70 0.87 1.13 1.14 0.088 -0.026 < 2 

Large 

Office 

Chilled 

Water 
0.52 0.85 3.35 3.72 0.40 -0.079 9 

Wind 

School Ice 0.65 0.93 0.90 0.91 0.026 -0.089 1 

Large 

Office 

Chilled 

Water 
0.61 0.88 2.72 3.08 0.22 -0.42 7 

  

6.2 Recommendations for Future Work 

The control strategies considered in this research assume that the cooling load profile is 

known for the remainder of the current day and that equipment is capable of responding quickly 

to changes in the renewable power level. These assumptions represent the limit of the practically 

achievable benefit that can be realized with the CTES systems. Implementing simulations with 

less-than-perfect knowledge of the cooling load and chiller ambient conditions would be more 

realistic for implementation in actual facilities. For the Model Predictive Control strategy, 

imperfect inputs require a significant increase in computational power. The simulations run for 

this research are performed with full knowledge of the daily input data and the system is effectively 

reset every 24 hours by requiring that the storage system be full at a particular time of day.  As a 

result, the control strategy runs the optimization algorithm only once per twenty-four-hour period. 

Using forecasted data, the optimization should be updated in each timestep requiring increased 

computational power and time. With sub-hour timestep lengths, it is important that the 

optimization be completed well within that timeframe so that the next control decision can be 
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implemented. With complicated combinations of equipment in campus district systems, linearized 

models like the chiller model detailed in Section 2.5.5 are necessary. Longer timesteps along with 

more accurate system models could be implemented, but there would be a trade-off in the Model 

Predictive Control savings. There may also be an occupant comfort penalty if cooling loads are 

not met throughout the duration of the longer timestep. 

The Model Predictive Control strategy employed in this research considers only a cost 

minimization objective. While increasingly variable electricity rate structures were applied in 

order to identify the added value of dynamic control with more variable inputs, simulations should 

be performed which explicitly aim to increase the utilization wind and solar resources. For many 

locations, wind and solar power forecasts are produced continually for the purpose of integrating 

this power into the grid (Hodge 2016). These power forecasts can be used as inputs to the Model 

Predictive Control strategy along with weather and cooling load forecasts. Particularly for wind 

power, the expected benefits of dynamic control over traditional control methods are significant. 

The Model Predictive Control simulations presented in this dissertation consider electricity 

rates with energy charges only. Demand charges should be considered and they should be 

incorporated along with an expansion of the system definition. The current simulations consider 

only the chiller plant electric consumption and treat other electrical loads such as lighting and plug 

loads as outside of the scope. Because these loads are also simulated in the Commfercial Reference 

Building simulations, they can be input into the Model Predictive Control strategy with an 

objective to minimize the total electricity cost including demand charges. 

The Cost Control and Renewable Control strategies in this research utilize a constant set 

of control parameters throughout the simulation year. Because the locations analyzed have three 

cooling seasons – spring, summer, and fall, improved performance may result from using more 
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than one set of parameters. This could be in the form of a separate set of parameters for each of 

the three cooling seasons or just two, one for the spring and fall and another set for the summer. 

One example of a potential benefit is allowing the chiller system to operate at lower part-load 

ratios during the summer months when wind plant capacity factors are generally at their lowest as 

shown in Figure 6-1. If the chiller is constrained to operate only at full load in the spring when the 

wind resource is generally strong, the annual simulation may be able to meet a greater portion of 

its chiller energy consumption by wind power if the chiller system is allowed to operate with 

part-load ratios of less than one. Varying control parameters would also be useful for time-of-use 

electricity rate structures that vary significantly by season. 

 

Figure 6-1. U.S. monthly median wind plant capacity factors for 2001-2013 (EIA 2015) 

Another recommendation regarding the control parameters is related to the constraint that 

the CTES system be fully recharged at least once in each twenty-four-hour period. This constraint 

has been adopted in this research in acknowledgement of practical considerations of CTES system 

operation. Traditionally, because future cooling loads are always uncertain and tiered electricity 



  198 

 

 

rate structures reset on a daily basis, storage systems are recharged each day. In consideration of 

the system operation objective of maximizing renewable energy utilization in addition to the cost 

minimization objective, relaxation of this constraint should be considered. For example, with the 

Model Predictive Control strategy, the recharging constraint could be fully relaxed with sufficient 

computational power and oversized storage and chiller system capacities. If the control time 

horizon is extended to several days and the optimization is performed for that period regardless of 

the current time, the CTES system state-of-charge could be continuously optimized. In this case, 

the CTES system would not explicitly require a full recharge although full recharges would be 

necessary to meet the cooling loads during periods when they are significant. With forecasted input 

data, there should be constraints in place to ensure that an under-predicted cooling load doesn’t 

result in future cooling loads being unmet. 

None of the control strategies implemented in this research take into account the cost of 

added maintenance due to repeated idling and activation of the chiller system in successive 

ten-minute timesteps. They also do not consider the time required to initiate a startup (and shut 

down) sequence for chillers. Ideally, the simulations should restrict individual chiller from 

switching on and off more than a few times per day. For the Model Predictive Control strategy, 

this limitation can be achieved by adding an artificial cost penalty that is a function of the 

frequency of the equipment start-up and shut-down. This penalty forces the optimization algorithm 

to favor control trajectories that switch chiller system operation infrequently. The appropriate 

function and magnitude for the penalty must be determined carefully so that it does not end up 

selecting an overly conservative trajectory at the expense of the optimization objective. It also 

must serve its purpose of representing the added cost associated with frequent chiller system idling 

and re-activation. 
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All simulations performed for this research utilize standardized Commercial Reference 

Building cooling loads, standard chiller system performance curves, and most use Typical 

Meteorological Year weather data. While these resources are ideal for this type of research due to 

their standardized format and public availability, actual buildings should be used for simulation 

and eventual implementation. An existing building that has a chiller system installed, has available 

cooling load data, and is in need of a retrofit would be ideal. This building would have a more 

accurate baseline for the energy consumption (as a function of weather, day of the week, and 

building occupancy) in the no-storage system case and a CTES system could be designed and 

installed to run with any of the three proposed control strategies. This would also provide 

experimental data regarding the influence of losses not considered in the simulations. 
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8 APPENDIX: MATLAB THERMAL STORAGE SIMULATION PROGRAM CODE 

The MATLAB program code used for annual simulations and the associated functions are provided here. 

function [TotalCost,ChillerMetbyRenewable] = ThermalStorage(x) 

%This function performs an annual simulation of a thermal storage system and 

%includes Renewable Control and Cost Control Strategies for Cool Thermal 

%Energy Storage 

 

%Input x is a cell and should be surrounded by { } 

ControlStrategy=x{1};               % 'Renewable' Control or 'Cost' Control 

RenewableFactor=x{2};               % [-] Multiplier of no-storage full-load chiller power 

MinLoading=x{3};                    % Chiller minimum unloading ratio (thermal) 

Hour=x{4};                          % Time of day by which tank must be recharged (0 to 23) 

TankFactor=x{5};                    % Multiplier of partial storage sized tanks 

ChillerFactor=x{6};                 % Multiplier of partial storage sized chillers 

Resource=x{7};                      % 'Solar' or 'Wind' resource 

ChillerType=x{8};                   % 'Water'-cooled (office) or 'Air'-cooled (school) 

Location=x{9};                      % 'TX' 'LA' 'MSN' 'NY' (Amarillo, Los Angeles, Madison, New York) 

StorageType=x{10};                  % 'CHW' or 'Ice' 

 

%Constant Parameters 

MinTemp=15.56;                      % [C] min Tdb for air-cooled performance advantage 

N=6;                                % Number of timesteps per Hour 

n=20;                               % Timespan for economic analysis (years) 

Tset=4.44;                          % [C] chilled water chiller set point 

c_gly=3.76;                         % [kJ/kg-K] specific heat capacity of 25% ethylene glycol 

Tfr=0;                              % [C] freezing temperature of water for ice storage 

Tice=-6.67;                         % [C] set ice-making temperature 

Tload=6.67;                         % [C] ice storage load-meeting temperature 

mice_each=3.9;                      % [kg/s] rated ice storage mass flow rate per tank (60 GPM) 

Ice_Cap=570;                        % [kWh] rated ice storage tank capacity (162 ton-hrs) 

Treturn=13.33;                      % [C] ice storage load return temperature 

 

%Normalize renewable energy by full load chiller power for no storage case 

if strcmp('Water',ChillerType)==1   % Office building 

    if strcmp('TX',Location)==1 
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        FullLoadChillerPower=0.955; % 955 kW Chiller power for TX 

    elseif strcmp('LA',Location)==1 

        FullLoadChillerPower=1.061; % 1,061 kW for LA 

    elseif strcmp('MSN',Location)==1 

        FullLoadChillerPower=1.101; % 1,101 kW for MSN 

    elseif strcmp('NY',Location)==1 

        FullLoadChillerPower=1.313; % 1,313 kW for NY 

    end 

elseif strcmp('Air',ChillerType)==1 % Secondary School 

    if strcmp('TX',Location)==1 

        FullLoadChillerPower=0.500; % 500 kW for TX 

    elseif strcmp('LA',Location)==1 

        FullLoadChillerPower=0.383; % 383 kW for LA 

    elseif strcmp('MSN',Location)==1 

        FullLoadChillerPower=0.457; % 457 kW for MSN 

    elseif strcmp('NY',Location)==1 

        FullLoadChillerPower=0.583; % 583 kW for NY 

    end 

end 

 

%Load all of the pre-calculated variables 

%Texas 

if strcmp('TX',Location)==1 

    if strcmp('Air',ChillerType)==1               %Secondary School 

        if strcmp('CHW',StorageType)==1           %Stratified chilled water storage 

            Tank_Cap=5500*TankFactor;             %[kWh] oversized by TankFactor 

            Chiller_Rated=640*ChillerFactor;      %[kW] thermal chiller capacity oversized by ChillerFactor 

        elseif strcmp('Ice',StorageType)==1       %Ice storage 

            Tank_Cap=3000*TankFactor; 

            Chiller_Rated=740*ChillerFactor; 

        end 

        V2='CoolingLoadTX';CoolingLoad=load('CoolingLoadTX.mat',V2);CoolingLoad=CoolingLoad.(V2); 

    elseif strcmp('Water',ChillerType)==1         %Large Office building 

        if strcmp('CHW',StorageType)==1 

            Tank_Cap=18500*TankFactor; 

            Chiller_Rated=2050*ChillerFactor; 

        elseif strcmp('Ice',StorageType)==1 

            Tank_Cap=27000*TankFactor; 

            Chiller_Rated=2350*ChillerFactor; 
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        end 

        V2='CoolingLoadOfficeTX'; 

        CoolingLoad=load('CoolingLoadOfficeTX.mat',V2);CoolingLoad=CoolingLoad.(V2); 

    end 

    if strcmp('Solar',Resource)==1 

        V1='SolarPowerTX'; 

        RenewablePower1=load('SolarPowerTX.mat',V1);RenewablePower1=RenewablePower1.(V1); 

        RenewablePower=RenewablePower1.*RenewableFactor.*FullLoadChillerPower; 

        %Solar power sized as a multiple of the no-storage full-load chiller power 

    elseif strcmp('Wind',Resource)==1 

        V1='WindPowerTX'; 

        RenewablePower1=load('WindPowerTX.mat',V1);RenewablePower1=RenewablePower1.(V1); 

        RenewablePower=RenewablePower1.*RenewableFactor.*FullLoadChillerPower; 

        %Wind power sized as a multiple of the no-storage full-load chiller power 

    end 

    V3='TempTX';                                  %Dry-bulb temperature 

    Temp=load('TempTX.mat',V3);Temp=Temp.(V3); 

    V8='WBTempTX';                                %Wet-bulb temperature 

    Twb=load('WBTempTX.mat',V8);Twb=Twb.(V8); 

 

%Los Angeles 

elseif strcmp('LA',Location)==1 

    if strcmp('Air',ChillerType)==1 

        if strcmp('CHW',StorageType)==1 

            Tank_Cap=4490*TankFactor; 

            Chiller_Rated=469*ChillerFactor; 

        elseif strcmp('Ice',StorageType)==1 

            Tank_Cap=3050*TankFactor; 

            Chiller_Rated=570*ChillerFactor; 

        end 

        V2='CoolingLoadLA'; 

        CoolingLoad=load('CoolingLoadLA.mat',V2);CoolingLoad=CoolingLoad.(V2); 

    elseif strcmp('Water',ChillerType)==1 

        if strcmp('CHW',StorageType)==1 

            Tank_Cap=19200*TankFactor; 

            Chiller_Rated=2250*ChillerFactor; 

        elseif strcmp('Ice',StorageType)==1 

            Tank_Cap=28000*TankFactor; 

            Chiller_Rated=2550*ChillerFactor; 
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        end 

        V2='CoolingLoadOfficeLA'; 

        CoolingLoad=load('CoolingLoadOfficeLA.mat',V2);CoolingLoad=CoolingLoad.(V2); 

    end 

    if strcmp('Solar',Resource)==1 

        V1='SolarPowerLA'; 

        RenewablePower1=load('SolarPowerLA.mat',V1);RenewablePower1=RenewablePower1.(V1); 

        RenewablePower=RenewablePower1.*RenewableFactor.*FullLoadChillerPower; 

    elseif strcmp('Wind',Resource)==1 

        V1='WindPowerLA'; 

        RenewablePower1=load('WindPowerLA.mat',V1);RenewablePower1=RenewablePower1.(V1); 

        RenewablePower=RenewablePower1.*RenewableFactor.*FullLoadChillerPower; 

    end 

    V3='TempLA'; 

    Temp=load('TempLA.mat',V3);Temp=Temp.(V3); 

    V8='WBTempLA'; 

    Twb=load('WBTempLA.mat',V8);Twb=Twb.(V8); 

 

%Madison 

elseif strcmp('MSN',Location)==1 

    if strcmp('Air',ChillerType)==1 

        if strcmp('CHW',StorageType)==1 

            Tank_Cap=5000*TankFactor; 

            Chiller_Rated=595*ChillerFactor; 

        elseif strcmp('Ice',StorageType)==1 

            Tank_Cap=2100*TankFactor; 

            Chiller_Rated=650*ChillerFactor; 

        end 

        V2='CoolingLoadMSN'; 

        CoolingLoad=load('CoolingLoadMSN.mat',V2);CoolingLoad=CoolingLoad.(V2); 

    elseif strcmp('Water',ChillerType)==1 

        if strcmp('CHW',StorageType)==1 

            Tank_Cap=18900*TankFactor; 

            Chiller_Rated=2500*ChillerFactor; 

        elseif strcmp('Ice',StorageType)==1 

            Tank_Cap=30000*TankFactor; 

            Chiller_Rated=2750*ChillerFactor; 

        end 

        V2='CoolingLoadOfficeMSN'; 
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        CoolingLoad=load('CoolingLoadOfficeMSN.mat',V2);CoolingLoad=CoolingLoad.(V2); 

    end 

    if strcmp('Solar',Resource)==1 

        V1='SolarPowerMSN'; 

        RenewablePower1=load('SolarPowerMSN.mat',V1);RenewablePower1=RenewablePower1.(V1); 

        RenewablePower=RenewablePower1.*RenewableFactor.*FullLoadChillerPower; 

    elseif strcmp('Wind',Resource)==1 

        V1='WindPowerMSN'; 

        RenewablePower1=load('WindPowerMSN.mat',V1);RenewablePower1=RenewablePower1.(V1); 

        RenewablePower=RenewablePower1.*RenewableFactor.*FullLoadChillerPower; 

    end 

    V3='TempMSN'; 

    Temp=load('TempMSN.mat',V3);Temp=Temp.(V3); 

    V8='WBTempMSN'; 

    Twb=load('WBTempMSN.mat',V8);Twb=Twb.(V8); 

 

%New York 

elseif strcmp('NY',Location)==1 

    if strcmp('Air',ChillerType)==1 

        if strcmp('CHW',StorageType)==1 

            Tank_Cap=6300*TankFactor; 

            Chiller_Rated=718*ChillerFactor; 

        elseif strcmp('Ice',StorageType)==1 

            Tank_Cap=2500*TankFactor; 

            Chiller_Rated=800*ChillerFactor; 

        end 

        V2='CoolingLoadNY'; 

        CoolingLoad=load('CoolingLoadNY.mat',V2);CoolingLoad=CoolingLoad.(V2); 

    elseif strcmp('Water',ChillerType)==1 

        if strcmp('CHW',StorageType)==1 

            Tank_Cap=22000*TankFactor; 

            Chiller_Rated=2850*ChillerFactor; 

        elseif strcmp('Ice',StorageType)==1 

            Tank_Cap=33500*TankFactor; 

            Chiller_Rated=3100*ChillerFactor; 

        end 

        V2='CoolingLoadOfficeNY'; 

        CoolingLoad=load('CoolingLoadOfficeNY.mat',V2);CoolingLoad=CoolingLoad.(V2); 

    end 
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    if strcmp('Solar',Resource)==1 

        V1='SolarPowerNY'; 

        RenewablePower1=load('SolarPowerNY.mat',V1);RenewablePower1=RenewablePower1.(V1); 

        RenewablePower=RenewablePower1.*RenewableFactor.*FullLoadChillerPower; 

    elseif strcmp('Wind',Resource)==1 

        V1='WindPowerNY'; 

        RenewablePower1=load('WindPowerNY.mat',V1);RenewablePower1=RenewablePower1.(V1); 

        RenewablePower=RenewablePower1.*RenewableFactor.*FullLoadChillerPower; 

    end 

    V3='TempNY'; 

    Temp=load('TempNY.mat',V3);Temp=Temp.(V3); 

    V8='WBTempNY'; 

    Twb=load('WBTempNY.mat',V8);Twb=Twb.(V8); 

end 

 

% Energy charges only 

% V4='ElectricRate'; 

% ElectricRate=load('ElectricRate.mat',V4);ElectricRate=ElectricRate.(V4); 

% Demand charges 

V4='ElectricRateDemand'; 

ElectricRate=load('ElectricRateDemand.mat',V4);ElectricRate=ElectricRate.(V4); 

 

%Initialize all vectors for computational efficiency 

PLR=zeros(8760*N+1,1);COP=zeros(8760*N+1,1);ChillerAdded=zeros(8760*N+1,1);TankCharge=zeros(8760*N+1,1); 

PowerUsed=zeros(8760*N+1,1);COP_Calc=zeros(8760*N+1,1);RenewablePowerUsed=zeros(8760*N+1,1); 

OperatingCost=zeros(8760*N+1,1);OperationCode=zeros(8760*N+1,1);Qice=zeros(8760*N+1,1); 

Qchiller=zeros(8760*N+1,1);Qicemax=zeros(8760*N+1,1);Tin=-6.67.*ones(8760*N+1,1); 

PLR_Int=zeros(8760*N+1,1);ChillerCap=zeros(8760*N+1,1);ChillerCapLoad=zeros(8760*N+1,1); 

FullLoadEffIce=zeros(8760*N+1,1);PLRIntLoad=zeros(8760*N+1,1);FullLoadEff=zeros(8760*N+1,1); 

mice=zeros(8760*N+1,1);Tout=zeros(8760*N+1,1);Tchwi=zeros(8760*N+1,1);UA=zeros(8760*N+1,1); 

TimeUntilHour=zeros(8760*N+1,1);ChargeTimeReqd=zeros(8760*N+1,1); 

 

%Calculate chiller capacity and full load power at each timestep 

k=1:(8760*N+1); 

if strcmp('Ice',StorageType)==1 

    %Default chiller capacity for ice storage is at Tice 

    if strcmp('Air',ChillerType)==1 

        ChillerCap=ChillerCapacity(Temp(k),Tice,Chiller_Rated);ChillerCap(1)=0; 

    elseif strcmp('Water',ChillerType)==1 
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        ChillerCap=ChillerCapacityWater(Twb(k),Tice,Chiller_Rated);ChillerCap(1)=0; 

    end 

end 

if strcmp('CHW',StorageType)==1 

    if strcmp('Air',ChillerType)==1 

        ChillerCap=ChillerCapacity(Temp(k),Tset,Chiller_Rated);ChillerCap(1)=0; 

    elseif strcmp('Water',ChillerType)==1 

        ChillerCap=ChillerCapacityWater(Twb(k),Tset,Chiller_Rated);ChillerCap(1)=0; 

    end 

end 

 

%Calculate Load, Chiller Capacity remaining in the day for CHW 

CapRemaining=ChillerCapacityRemaining(N,Hour,ChillerCap); 

LoadRemaining=CoolingLoadRemaining(N,Hour,CoolingLoad); 

 

%Calculate the intermediate PLR when renewable power isn't sufficient for full-load operation 

if strcmp('Renewable',ControlStrategy)==1 

    for k=1:(8760*N+1) 

        if strcmp('CHW',StorageType)==1 

            if strcmp('Air',ChillerType)==1 

                PLR_Int(k)=PLRIntermediate(RenewablePower(k),Temp(k),Tset,ChillerCap(k)); 

            elseif strcmp('Water',ChillerType)==1 

                PLR_Int(k)=PLRIntermediateWater(RenewablePower(k),Twb(k),Tset,ChillerCap(k)); 

            end 

        elseif strcmp('Ice',StorageType)==1 

            %Default chiller set point temperature is Tice for ice storage 

            if strcmp('Air',ChillerType)==1 

                PLR_Int(k)=PLRIntermediate(RenewablePower(k),Temp(k),Tice,ChillerCap(k)); 

            elseif strcmp('Water',ChillerType)==1 

                PLR_Int(k)=PLRIntermediateWater(RenewablePower(k),Twb(k),Tice,ChillerCap(k)); 

            end 

        end 

    end 

end 

 

%Run one of the four control strategies, renewable or cost with ice or chilled water 

for j=2:(8760*N+1) 

    if strcmp('CHW',StorageType)==1               %Chilled water storage 

        if strcmp('Air',ChillerType)==1           %Calculate full-load chiller efficiency 
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            FullLoadEff(j)=Efficiency2Chiller(1,Temp(j),Tset); 

        elseif strcmp('Water',ChillerType)==1 

            FullLoadEff(j)=Efficiency2ChillerWater(1,Twb(j),Tset); 

        end 

        if strcmp('Renewable',ControlStrategy)==1 %Renewable Control 

            TankCharge(1)=Tank_Cap/TankFactor;    %Tank is initially charged to meet one day's load 

            if CapRemaining(j)<=(LoadRemaining(j)+(Tank_Cap/TankFactor-TankCharge(j-1))) 

                %For fully charging the tank by the end of each day 

                PLR(j)=1; 

                OperationCode(j)=4;               %For determining the flow chart branch 

            elseif RenewablePower(j)<MinLoading*ChillerCap(j)/FullLoadEff(j) 

                %Renewable power is not sufficient to meet minimum PLR 

                PLR(j)=0; 

                OperationCode(j)=1; 

            elseif (((Tank_Cap-TankCharge(j-1))*N+CoolingLoad(j))/... 

                    ChillerCap(j))<MinLoading 

                %Not enough cooling load and/or tank capacity to meet minimum PLR 

                PLR(j)=0; 

                OperationCode(j)=2; 

            elseif RenewablePower(j)<=ChillerCap(j)*FullLoadEff(j) 

                %Operating PLR if renewable power isn't sufficient for full-load operation 

                PLR(j)=max(MinLoading,min([((Tank_Cap-TankCharge(j-1))*N+... 

                    CoolingLoad(j))/ChillerCap(j),PLR_Int(j),1])); 

                OperationCode(j)=3; 

            else 

                %Operates at minimum of full load or the available storage capacity plus cooling load 

                PLR(j)=max(MinLoading,min(((Tank_Cap-TankCharge(j-1))*N+CoolingLoad(j))/... 

                    ChillerCap(j),1)); 

                OperationCode(j)=3; 

            end 

            % COP for Chillers based on 2013 CA Building Energy 

            % Efficiency Standards ACM as a function of ambient dry bulb and PLR 

            if strcmp('Air',ChillerType)==1 

                COP(j)=max(0,Efficiency2Chiller(PLR(j),Temp(j),Tset)); 

            elseif strcmp('Water',ChillerType)==1 

                COP(j)=max(0,Efficiency2ChillerWater(PLR(j),Twb(j),Tset)); 

            end 

            %Calculation for tank charge at the current time step 

            ChillerAdded(j)=PLR(j)*ChillerCap(j)/N; 
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            TankCharge(j)=min(Tank_Cap,TankCharge(j-1)-CoolingLoad(j)/N+ChillerAdded(j)); 

            %Power consumed at each timestep 

            if PLR(j)==0 

                PowerUsed(j)=0; 

            else 

                PowerUsed(j)=((TankCharge(j)-TankCharge(j-1))*N+CoolingLoad(j))/COP(j); 

            end 

            %Renewable Power Used 

            if PowerUsed(j)>=RenewablePower(j) 

                RenewablePowerUsed(j)=RenewablePower(j); 

            else 

                RenewablePowerUsed(j)=PowerUsed(j); 

            end 

        elseif strcmp('Cost',ControlStrategy)==1 

            TankCharge(1)=Tank_Cap/TankFactor; 

            %Tank is initially charged to meet one day's load 

            if TankCharge(j-1)<Min_Tank_Charge*(Tank_Cap/TankFactor) 

                PLR(j)=1; 

                OperationCode(j)=4; 

            elseif CapRemaining(j)<=(LoadRemaining(j)+(Tank_Cap/TankFactor-TankCharge(j-1))) 

                %For fully charging the tank each day 

                PLR(j)=1; 

                OperationCode(j)=4; 

            elseif ElectricRate(j)>0.10 

                %On-peak rates, chillers off 

                PLR(j)=0; 

                OperationCode(j)=1; 

            elseif (((Tank_Cap-TankCharge(j-1))*N+CoolingLoad(j))/... 

                    ChillerCap(j))<MinLoading 

                %Not enough storage capacity or cooling load to run at minimum PLR 

                PLR(j)=0; 

                OperationCode(j)=2; 

            elseif (Tank_Cap-TankCharge(j-1))>0 

                %Tank capacity available, run chillers 

                PLR(j)=max(MinLoading,min(((Tank_Cap-TankCharge(j-1))*N+CoolingLoad(j))/... 

                    ChillerCap(j),1)); 

                OperationCode(j)=3; 

            end 

            % COP for chillers 



 

  

 

 

2
1
5
 

            if strcmp('Air',ChillerType)==1 

                COP(j)=max(0,Efficiency2Chiller(PLR(j),Temp(j),Tset)); 

            elseif strcmp('Water',ChillerType)==1 

                COP(j)=max(0,Efficiency2ChillerWater(PLR(j),Twb(j),Tset)); 

            end 

            %Calculation for tank charge at the current time step 

            ChillerAdded(j)=PLR(j)*ChillerCap(j)/N; 

            TankCharge(j)=min(Tank_Cap,TankCharge(j-1)-CoolingLoad(j)/N+ChillerAdded(j)); 

            %Power Used 

            if PLR(j)==0 

                PowerUsed(j)=0; 

            else 

                PowerUsed(j)=((TankCharge(j)-TankCharge(j-1))*N+CoolingLoad(j))/COP(j); 

            end 

            %Renewable Power Used 

            if PowerUsed(j)>=RenewablePower(j) 

                RenewablePowerUsed(j)=RenewablePower(j); 

            else 

                RenewablePowerUsed(j)=PowerUsed(j); 

            end 

        end 

    elseif strcmp('Ice',StorageType)==1           %Ice storage 

        if strcmp('Renewable',ControlStrategy)==1 %Renewable Control 

            if strcmp('Air',ChillerType)==1 

                %Chiller capacity at Tload, full-load efficiency at Tice, and PLR intermediate at Tload 

                ChillerCapLoad(j)=ChillerCapacity(Temp(j),Tload,Chiller_Rated); 

                FullLoadEffIce(j)=Efficiency2Chiller(1,Temp(j),Tice); 

            elseif strcmp('Water',ChillerType)==1 

                ChillerCapLoad(j)=ChillerCapacityWater(Twb(j),Tload,Chiller_Rated); 

                FullLoadEffIce(j)=Efficiency2ChillerWater(1,Twb(j),Tice); 

            end 

            %Calculate the current hour of the day and time until the recharge hour 

            CurrentHour=((j-2)-24*N*floor((j-2)/(24*N)))/N; 

            if (24-CurrentHour)+Hour>24 

                TimeUntilHour(j)=Hour-CurrentHour; 

            else 

                TimeUntilHour(j)=(24-CurrentHour)+Hour; 

            end 

            %Control Strategy to Determine PLR for Current Timestep 



 

  

 

 

2
1
6
 

            TankCharge(1)=0.9*Tank_Cap/TankFactor; 

            ChargeTimeReqd(j)=(8.76115124E+00-4.41084737E+00*(TankCharge(j-1)/(0.9*Tank_Cap))-... 

                    1.66356667E+01*(TankCharge(j-1)/(0.9*Tank_Cap))^2+... 

                    6.65651816E+01*(TankCharge(j-1)/(0.9*Tank_Cap))^3-... 

                    1.39814032E+02*(TankCharge(j-1)/(0.9*Tank_Cap))^4+... 

                    1.37814193E+02*(TankCharge(j-1)/(0.9*Tank_Cap))^5-... 

                    5.21558688E+01*(TankCharge(j-1)/(0.9*Tank_Cap))^6); 

            %Tank is initially charged to meet one day's load 

            if CapRemaining(j)<=(LoadRemaining(j)+(0.9*Tank_Cap/TankFactor-TankCharge(j-1)))||... 

                    TimeUntilHour(j)<=ChargeTimeReqd(j)||TankCharge(j-1)<0.2*(Tank_Cap/TankFactor) 

                %For fully charging the tank by the end of each day 

                %Uses the remaining chiller capacity versus the remaining load 

                %and the time needed to fully recharge the tank based on the current state of charge 

                PLR(j)=1; 

                Tin(j)=Tice; 

                Qchiller(j)=ChillerCap(j); 

                if CoolingLoad(j)==0 && TankCharge(j-1)>=0.90*Tank_Cap              %Off 

                    OperationCode(j)=5; 

                    PLR(j)=0; 

                    TankCharge(j)=TankCharge(j-1); 

                elseif CoolingLoad(j)==0 && TankCharge(j-1)<0.90*Tank_Cap           %Make Ice 

                    OperationCode(j)=1; 

                    [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,1,Tank_Cap,1); 

                    C=min(-UA(j)*Tank_Cap*Tin(j)/(PLR(j)*ChillerCap(j)*Ice_Cap),6); 

                    Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                        1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+...6.74396219E-

04.*C.^6);             

                    mice(j)=PLR(j).*ChillerCap(j)/(c_gly*(Tout(j)-Tin(j))); 

                    [~,Qice(j),~]=IceModel(TankCharge(j-1)/Tank_Cap,Tin(j),1,Tank_Cap,mice(j)); 

                    if Qice(j)>=Qchiller(j) 

                        Qice(j)=Qchiller(j); 

                    elseif Qice(j)<Qchiller(j) 

                        PLR(j)=max(MinLoading,Qice(j)/ChillerCap(j)); 

                    end 

                    TankCharge(j)=TankCharge(j-1)+Qice(j)/N; 

                elseif CoolingLoad(j)~=0 && CoolingLoad(j)<=0.8*ChillerCap(j)... 

                        && TankCharge(j-1)<0.90*Tank_Cap                            %Make Ice and Cool 

                    OperationCode(j)=2; 

                    mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 
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                    [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,1,Tank_Cap,1); 

                    UA(j)=min(UA(j),35); 

                    [Tin(j),mice(j),Tout(j),Tchwi(j)]=... 

                        MakeIceandCool(PLR(j),UA(j),CoolingLoad(j),Chiller_Rated,Tank_Cap); 

                    Qice(j)=mice(j)*c_gly*(Tout(j)-Tin(j)); 

                    Qchiller(j)=mice(j)*c_gly*(Tchwi(j)-Tin(j)); 

                    TankCharge(j)=TankCharge(j-1)+Qice(j)/N; 

                elseif CoolingLoad(j)~=0 && CoolingLoad(j)<=ChillerCapLoad(j)       %Chiller Only 

                    OperationCode(j)=3; 

                    Tin(j)=Tload; 

                    Qchiller(j)=CoolingLoad(j); 

                    ChillerCap(j)=ChillerCapLoad(j); 

                    PLR(j)=max(MinLoading,Qchiller(j)/ChillerCap(j)); 

                    TankCharge(j)=TankCharge(j-1); 

                elseif CoolingLoad(j)~=0 && CoolingLoad(j)>ChillerCapLoad(j)        %Chiller and Ice 

                    OperationCode(j)=4; 

                    ChillerCap(j)=ChillerCapLoad(j); 

                    mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                    Tin(j)=Treturn-PLR(j)*ChillerCap(j)/(mload*c_gly); 

                    [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,2,Tank_Cap,1); 

                    C=min(-UA(j)*Tank_Cap/((Tload/Tin(j)-1)*mload*c_gly*Ice_Cap),6); 

                    Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                        1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+6.74396219E-

04.*C.^6); 

                    Qchiller(j)=mice(j)*c_gly*(Treturn-Tin(j)); 

                    mice(j)=mload*((Tload/Tin(j))-1)/((Tout(j)/Tin(j))-1); 

                    Qice(j)=mice(j)*c_gly*(Tin(j)-Tout(j)); 

                    TankCharge(j)=TankCharge(j-1)-Qice(j)/N; 

                end 

            elseif RenewablePower(j)<MinLoading*ChillerCap(j)/FullLoadEffIce(j) 

                if CoolingLoad(j)==0                                                %Off 

                    OperationCode(j)=5; 

                    PLR(j)=0; 

                    TankCharge(j)=TankCharge(j-1); 

                elseif CoolingLoad(j)~=0 

                    Tin(j)=Treturn; 

                    mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                    Qice(j)=IceModel(TankCharge(j-1)/Tank_Cap,Tin(j),2,Tank_Cap,mload); 

                    if Qice(j)>=CoolingLoad(j)                                      %Ice Only 
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                        OperationCode(j)=6; 

                        PLR(j)=0; 

                        [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,2,Tank_Cap,1); 

                        C=min(-UA(j)*Tank_Cap/((Tload/Treturn-1)*mload*c_gly*Ice_Cap),6); 

                        Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                            1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+... 

                            6.74396219E-04.*C.^6); 

                        mice(j)=mload*((Tload/Treturn)-1)/((Tout(j)/Treturn)-1); 

                        Qice(j)=mice(j)*c_gly*(Tin(j)-Tout(j)); 

                    elseif Qice(j)<CoolingLoad(j);                                  %Chiller and Ice 

                        OperationCode(j)=4; 

                        Tin(j)=10; 

                        if strcmp('Air',ChillerType)==1 

                            ChillerCap(j)=ChillerCapacity(Temp(j),Tin(j),Chiller_Rated); 

                        elseif strcmp('Water',ChillerType)==1 

                            ChillerCap(j)=ChillerCapacityWater(Twb(j),Tin(j),Chiller_Rated); 

                        end 

                        mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                        [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,2,Tank_Cap,1); 

                        C=min(-UA(j)*Tank_Cap/((Tload/Tin(j)-1)*mload*c_gly*Ice_Cap),6); 

                        Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                            1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+... 

                            6.74396219E-04.*C.^6); 

                        Qchiller(j)=mice(j)*c_gly*(Treturn-Tin(j)); 

                        mice(j)=mload*((Tload/Tin(j))-1)/((Tout(j)/Tin(j))-1); 

                        Qice(j)=mice(j)*c_gly*(Tin(j)-Tout(j)); 

                        TankCharge(j)=TankCharge(j-1)-Qice(j)/N; 

                        PLR(j)=max(MinLoading,Qchiller(j)/ChillerCap(j)); 

                    end 

                    TankCharge(j)=TankCharge(j-1)-Qice(j)/N; 

                end 

            elseif RenewablePower(j)>=MinLoading*ChillerCap(j)/FullLoadEffIce(j) 

                if CoolingLoad(j)==0 && TankCharge(j-1)<0.90*Tank_Cap 

                    OperationCode(j)=1;                                             %Make Ice 

                    Tin(j)=Tice; 

                    [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,1,Tank_Cap,1); 

                    C=min(-UA(j)*Tank_Cap*Tin(j)/(PLR(j)*ChillerCap(j)*Ice_Cap),6); 

                    Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                        1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+6.74396219E-
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04.*C.^6); 

                    PLR(j)=max(MinLoading,min([((Tank_Cap-TankCharge(j-1))*N+... 

                        CoolingLoad(j))/ChillerCap(j),PLR_Int(j),1])); 

                    mice(j)=PLR(j).*ChillerCap(j)/(c_gly*(Tout(j)-Tin(j))); 

                    [~,Qice(j),~]=IceModel(TankCharge(j-1)/Tank_Cap,Tin(j),1,Tank_Cap,mice(j)); 

                    Qchiller(j)=mice(j)*c_gly*(Tout(j)-Tin(j)); 

                    if Qice(j)>=Qchiller(j) 

                        Qice(j)=Qchiller(j); 

                    elseif Qice(j)<Qchiller(j) 

                        PLR(j)=max(MinLoading,Qice(j)/ChillerCap(j)); 

                    end 

                    TankCharge(j)=TankCharge(j-1)+Qice(j)/N; 

                elseif CoolingLoad(j)==0 && TankCharge(j-1)>=0.90*Tank_Cap           %Off 

                    OperationCode(j)=5; 

                    PLR(j)=0; 

                    TankCharge(j)=TankCharge(j-1); 

                elseif CoolingLoad(j)~=0 

                    PLR(j)=max(MinLoading,min([((Tank_Cap-TankCharge(j-1))*N+... 

                        CoolingLoad(j))/ChillerCap(j),PLR_Int(j),1])); 

                    if CoolingLoad(j)<=ChillerCapLoad(j) 

                        if TankCharge(j-1)<0.90*Tank_Cap && CoolingLoad(j)<=0.8*ChillerCap(j) 

                            OperationCode(j)=2;                                     %Make Ice and Cool 

                            Tin(j)=Tice; 

                            mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                            [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,1,Tank_Cap,1); 

                            UA(j)=min(UA(j),35); 

                            [Tin(j),mice(j),Tout(j),Tchwi(j)]=... 

                                MakeIceandCool(PLR(j),UA(j),CoolingLoad(j),Chiller_Rated,Tank_Cap); 

                            Qice(j)=mice(j)*c_gly*(Tout(j)-Tin(j)); 

                            Qchiller(j)=mice(j)*c_gly*(Tchwi(j)-Tin(j)); 

                            TankCharge(j)=TankCharge(j-1)+Qice(j)/N; 

                        else                                                        %Chiller Only 

                            OperationCode(j)=3; 

                            Tin(j)=Tload; 

                            ChillerCap(j)=ChillerCapLoad(j); 

                            if strcmp('Air',ChillerType)==1 

                                PLR_Int(j)=PLRIntermediate(RenewablePower(j),Temp(j),Tload,ChillerCap(j)); 

                            elseif strcmp('Water',ChillerType)==1 

                                PLR_Int(j)=PLRIntermediate(RenewablePower(j),Twb(j),Tload,ChillerCap(j)); 
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                            end 

                            PLR(j)=max(MinLoading,min(PLR_Int(j),CoolingLoad(j)/ChillerCap(j))); 

                            Qchiller(j)=ChillerCap(j)*PLR(j); 

                            TankCharge(j)=TankCharge(j-1); 

                        end 

                    elseif CoolingLoad(j)>ChillerCapLoad(j)                         %Chiller and Ice 

                        OperationCode(j)=4; 

                        ChillerCap(j)=ChillerCapLoad(j); 

                        mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                        Tin(j)=Treturn-PLR(j)*ChillerCap(j)/(mload*c_gly); 

                        [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,2,Tank_Cap,1); 

                        C=min(-UA(j)*Tank_Cap/((Tload/Tin(j)-1)*mload*c_gly*Ice_Cap),6); 

                        Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                            1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+... 

                            6.74396219E-04.*C.^6); 

                        Qchiller(j)=mice(j)*c_gly*(Treturn-Tin(j)); 

                        mice(j)=mload*((Tload/Tin(j))-1)/((Tout(j)/Tin(j))-1); 

                        Qice(j)=mice(j)*c_gly*(Tin(j)-Tout(j)); 

                        TankCharge(j)=TankCharge(j-1)-Qice(j)/N; 

                    end 

                end 

            end 

            % COP for chillers 

            if strcmp('Air',ChillerType)==1 

                COP(j)=max(0,Efficiency2Chiller(PLR(j),Temp(j),Tin(j))); 

            elseif strcmp('Water',ChillerType)==1 

                COP(j)=max(0,Efficiency2ChillerWater(PLR(j),Twb(j),Tin(j))); 

            end 

            %Power/Energy Used 

            if PLR(j)==0 

                PowerUsed(j)=0; 

            else 

                PowerUsed(j)=Qchiller(j)/COP(j); 

            end 

            %Renewable Power Used 

            if PowerUsed(j)>=RenewablePower(j) 

                RenewablePowerUsed(j)=RenewablePower(j); 

            else 

                RenewablePowerUsed(j)=PowerUsed(j); 
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            end 

        elseif strcmp('Cost',ControlStrategy)==1  %Cost Control 

            if strcmp('Air',ChillerType)==1 

                %Chiller capacity at Tload, full-load efficiency at Tice, and PLR intermediate at Tload 

                ChillerCapLoad(j)=ChillerCapacity(Temp(j),Tload,Chiller_Rated); 

                FullLoadEffIce(j)=Efficiency2Chiller(1,Temp(j),Tice); 

            elseif strcmp('Water',ChillerType)==1 

                ChillerCapLoad(j)=ChillerCapacityWater(Twb(j),Tload,Chiller_Rated); 

                FullLoadEffIce(j)=Efficiency2ChillerWater(1,Twb(j),Tice); 

            end 

            CurrentHour(j)=((j-2)-24*N*floor((j-2)/(24*N)))/N; 

            if (24-CurrentHour(j))+Hour>24 

                TimeUntilHour(j)=Hour-CurrentHour(j); 

            else 

                TimeUntilHour(j)=(24-CurrentHour(j))+Hour; 

            end 

            TankCharge(1)=0.9*Tank_Cap/TankFactor; 

            ChargeTimeReqd(j)=(8.76115124E+00-4.41084737E+00*(TankCharge(j-1)/(0.9*Tank_Cap))-... 

                    1.66356667E+01*(TankCharge(j-1)/(0.9*Tank_Cap))^2+... 

                    6.65651816E+01*(TankCharge(j-1)/(0.9*Tank_Cap))^3-... 

                    1.39814032E+02*(TankCharge(j-1)/(0.9*Tank_Cap))^4+... 

                    1.37814193E+02*(TankCharge(j-1)/(0.9*Tank_Cap))^5-... 

                    5.21558688E+01*(TankCharge(j-1)/(0.9*Tank_Cap))^6); 

            %Tank is initially charged to meet one day's load 

            if CapRemaining(j)<=(LoadRemaining(j)+(0.9*Tank_Cap/TankFactor-TankCharge(j-1)))||... 

                    TimeUntilHour(j)<=ChargeTimeReqd(j)||TankCharge(j-1)<0.2*(Tank_Cap/TankFactor) 

                %For fully charging the tank by the end of each day 

                %Uses the remaining chiller capacity versus the remaining load 

                %and the time needed to fully recharge the tank based on the current state of charge) 

                PLR(j)=1; 

                Tin(j)=Tice; 

                Qchiller(j)=ChillerCap(j); 

                if CoolingLoad(j)==0 && TankCharge(j-1)>=0.90*Tank_Cap              %Off 

                    OperationCode(j)=5; 

                    PLR(j)=0; 

                    TankCharge(j)=TankCharge(j-1); 

                elseif CoolingLoad(j)==0 && TankCharge(j-1)<0.90*Tank_Cap           %Make Ice 

                    OperationCode(j)=1; 

                    [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,1,Tank_Cap,1); 
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                    C=min(-UA(j)*Tank_Cap*Tin(j)/(PLR(j)*ChillerCap(j)*Ice_Cap),6); 

                    Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                        1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+6.74396219E-

04.*C.^6); 

                    mice(j)=PLR(j).*ChillerCap(j)/(c_gly*(Tout(j)-Tin(j))); 

                    [~,Qice(j),~]=IceModel(TankCharge(j-1)/Tank_Cap,Tin(j),1,Tank_Cap,mice(j)); 

                    if Qice(j)>=Qchiller(j) 

                        Qice(j)=Qchiller(j); 

                    elseif Qice(j)<Qchiller(j) 

                        PLR(j)=max(MinLoading,Qice(j)/ChillerCap(j)); 

                    end 

                    TankCharge(j)=TankCharge(j-1)+Qice(j)/N; 

                elseif CoolingLoad(j)~=0 && CoolingLoad(j)<=0.8*ChillerCap(j)... 

                        && TankCharge(j-1)<0.90*Tank_Cap                            %Make Ice and Cool 

                    OperationCode(j)=2; 

                    mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                    [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,1,Tank_Cap,1); 

                    UA(j)=min(UA(j),35); 

                    [Tin(j),mice(j),Tout(j),Tchwi(j)]=... 

                        MakeIceandCool(PLR(j),UA(j),CoolingLoad(j),Chiller_Rated,Tank_Cap); 

                    Qice(j)=mice(j)*c_gly*(Tout(j)-Tin(j)); 

                    Qchiller(j)=mice(j)*c_gly*(Tchwi(j)-Tin(j)); 

                    TankCharge(j)=TankCharge(j-1)+Qice(j)/N; 

                elseif CoolingLoad(j)~=0 && CoolingLoad(j)<=ChillerCapLoad(j)       %Chiller Only 

                    OperationCode(j)=3; 

                    Tin(j)=Tload; 

                    Qchiller(j)=CoolingLoad(j); 

                    ChillerCap(j)=ChillerCapLoad(j); 

                    PLR(j)=max(MinLoading,Qchiller(j)/ChillerCap(j)); 

                    TankCharge(j)=TankCharge(j-1); 

                elseif CoolingLoad(j)~=0 && CoolingLoad(j)>ChillerCapLoad(j)        %Chiller and Ice 

                    OperationCode(j)=4; 

                    ChillerCap(j)=ChillerCapLoad(j); 

                    mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                    Tin(j)=Treturn-PLR(j)*ChillerCap(j)/(mload*c_gly); 

                    [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,2,Tank_Cap,1); 

                    C=min(-UA(j)*Tank_Cap/((Tload/Tin(j)-1)*mload*c_gly*Ice_Cap),6); 

                    Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                        1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+6.74396219E-
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04.*C.^6); 

                    Qchiller(j)=mice(j)*c_gly*(Treturn-Tin(j)); 

                    mice(j)=mload*((Tload/Tin(j))-1)/((Tout(j)/Tin(j))-1); 

                    Qice(j)=mice(j)*c_gly*(Tin(j)-Tout(j)); 

                    TankCharge(j)=TankCharge(j-1)-Qice(j)/N; 

                end 

%           elseif ElectricRate(j)>0.10                                             %On-peak rates 

            elseif ElectricRate(j)>0.052                                            %Demand charge rate 

                if CoolingLoad(j)==0                                                %Off 

                    OperationCode(j)=5; 

                    PLR(j)=0; 

                    TankCharge(j)=TankCharge(j-1); 

                elseif CoolingLoad(j)~=0 

                    Tin(j)=Treturn; 

                    mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                    Qice(j)=IceModel(TankCharge(j-1)/Tank_Cap,Tin(j),2,Tank_Cap,mload); 

                    if Qice(j)>=CoolingLoad(j)                                      %Ice Only 

                        OperationCode(j)=6; 

                        PLR(j)=0; 

                        [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,2,Tank_Cap,1); 

                        C=min(-UA(j)*Tank_Cap/((Tload/Treturn-1)*mload*c_gly*Ice_Cap),6); 

                        Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                            1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+... 

                            6.74396219E-04.*C.^6); 

                        mice(j)=mload*((Tload/Treturn)-1)/((Tout(j)/Treturn)-1); 

                        Qice(j)=mice(j)*c_gly*(Tin(j)-Tout(j)); 

                    elseif Qice(j)<CoolingLoad(j);                                  %Chiller and Ice 

                        OperationCode(j)=4; 

                        Tin(j)=10; 

                        if strcmp('Air',ChillerType)==1 

                            ChillerCap(j)=ChillerCapacity(Temp(j),Tin(j),Chiller_Rated); 

                        elseif strcmp('Water',ChillerType)==1 

                            ChillerCap(j)=ChillerCapacityWater(Twb(j),Tin(j),Chiller_Rated); 

                        end 

                        mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                        [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,2,Tank_Cap,1); 

                        C=min(-UA(j)*Tank_Cap/((Tload/Tin(j)-1)*mload*c_gly*Ice_Cap),6); 

                        Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                            1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+... 
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                            6.74396219E-04.*C.^6); 

                        Qchiller(j)=mice(j)*c_gly*(Treturn-Tin(j)); 

                        mice(j)=mload*((Tload/Tin(j))-1)/((Tout(j)/Tin(j))-1); 

                        Qice(j)=mice(j)*c_gly*(Tin(j)-Tout(j)); 

                        TankCharge(j)=TankCharge(j-1)-Qice(j)/N; 

                        PLR(j)=max(MinLoading,Qchiller(j)/ChillerCap(j)); 

                    end 

                    TankCharge(j)=TankCharge(j-1)-Qice(j)/N; 

                end 

%           elseif ElectricRate(j)<0.10                                             %Off-peak rates 

            elseif ElectricRate(j)<0.052                                            %Demand charge rate 

                if CoolingLoad(j)==0 && TankCharge(j-1)<0.90*Tank_Cap 

                    OperationCode(j)=1;                                             %Make Ice 

                    Tin(j)=Tice; 

                    [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,1,Tank_Cap,1); 

                    C=min(-UA(j)*Tank_Cap*Tin(j)/(PLR(j)*ChillerCap(j)*Ice_Cap),6); 

                    Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                        1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+6.74396219E-

04.*C.^6); 

                    PLR(j)=max(MinLoading,min([((Tank_Cap-TankCharge(j-1))*N+... 

                        CoolingLoad(j))/ChillerCap(j),1])); 

                    mice(j)=PLR(j).*ChillerCap(j)/(c_gly*(Tout(j)-Tin(j))); 

                    [~,Qice(j),~]=IceModel(TankCharge(j-1)/Tank_Cap,Tin(j),1,Tank_Cap,mice(j)); 

                    Qchiller(j)=mice(j)*c_gly*(Tout(j)-Tin(j)); 

                    if Qice(j)>=Qchiller(j) 

                        Qice(j)=Qchiller(j); 

                    elseif Qice(j)<Qchiller(j) 

                        PLR(j)=max(MinLoading,Qice(j)/ChillerCap(j)); 

                    end 

                    TankCharge(j)=TankCharge(j-1)+Qice(j)/N; 

                elseif CoolingLoad(j)==0 && TankCharge(j-1)>=0.90*Tank_Cap           %Off 

                    OperationCode(j)=5; 

                    PLR(j)=0; 

                    TankCharge(j)=TankCharge(j-1); 

                elseif CoolingLoad(j)~=0 

                    PLR(j)=max(MinLoading,min([((Tank_Cap-TankCharge(j-1))*N+... 

                        CoolingLoad(j))/ChillerCap(j),1])); 

                    if CoolingLoad(j)<=ChillerCapLoad(j) 

                        if TankCharge(j-1)<0.90*Tank_Cap && CoolingLoad(j)<=0.8*ChillerCap(j) 
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                            OperationCode(j)=2;                                     %Make Ice and Cool 

                            Tin(j)=Tice; 

                            mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                            [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,1,Tank_Cap,1); 

                            UA(j)=min(UA(j),35); 

                            [Tin(j),mice(j),Tout(j),Tchwi(j)]=... 

                                MakeIceandCool(PLR(j),UA(j),CoolingLoad(j),Chiller_Rated,Tank_Cap); 

                            Qice(j)=mice(j)*c_gly*(Tout(j)-Tin(j)); 

                            Qchiller(j)=mice(j)*c_gly*(Tchwi(j)-Tin(j)); 

                            TankCharge(j)=TankCharge(j-1)+Qice(j)/N; 

                        else                                                        %Chiller Only 

                            OperationCode(j)=3; 

                            Tin(j)=Tload; 

                            ChillerCap(j)=ChillerCapLoad(j); 

                            PLR(j)=max(MinLoading,CoolingLoad(j)/ChillerCap(j)); 

                            Qchiller(j)=ChillerCap(j)*PLR(j); 

                            TankCharge(j)=TankCharge(j-1); 

                        end 

                    elseif CoolingLoad(j)>ChillerCapLoad(j)                         %Chiller and Ice 

                        OperationCode(j)=4; 

                        ChillerCap(j)=ChillerCapLoad(j); 

                        mload=CoolingLoad(j)/(c_gly*(Treturn-Tload)); 

                        Tin(j)=Treturn-PLR(j)*ChillerCap(j)/(mload*c_gly); 

                        [UA(j),~,~]=IceModel(TankCharge(j-1)/Tank_Cap,1,2,Tank_Cap,1); 

                        C=min(-UA(j)*Tank_Cap/((Tload/Tin(j)-1)*mload*c_gly*Ice_Cap),6); 

                        Tout(j)=Tin(j)*(4.43460676E+00-6.13886419E+00.*C+3.63956353E+00.*C.^2-... 

                            1.14819817E+00.*C.^3+2.00374524E-01.*C.^4-1.82304475E-02.*C.^5+6.74396219E-

04.*C.^6); 

                        Qchiller(j)=mice(j)*c_gly*(Treturn-Tin(j)); 

                        mice(j)=mload*((Tload/Tin(j))-1)/((Tout(j)/Tin(j))-1); 

                        Qice(j)=mice(j)*c_gly*(Tin(j)-Tout(j)); 

                        TankCharge(j)=TankCharge(j-1)-Qice(j)/N; 

                    end 

                end 

            end 

            % COP for chillers 

            if strcmp('Air',ChillerType)==1 

                COP(j)=max(0,Efficiency2Chiller(PLR(j),Temp(j),Tin(j))); %2 chillers in parallel 

            elseif strcmp('Water',ChillerType)==1 
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                COP(j)=max(0,Efficiency2ChillerWater(PLR(j),Twb(j),Tin(j))); 

            end 

            %Power/Energy Used 

            if PLR(j)==0 

                PowerUsed(j)=0; 

            else 

                PowerUsed(j)=Qchiller(j)/COP(j); 

            end 

            %Renewable Power Used 

            if PowerUsed(j)>=RenewablePower(j) 

                RenewablePowerUsed(j)=RenewablePower(j); 

            else 

                RenewablePowerUsed(j)=PowerUsed(j); 

            end 

        end 

    end 

end 

 

%Total Renewable Power Used by Chiller 

ChillerEnergyUsed=sum(PowerUsed./N); 

RenewableEnergyUsed=sum(RenewablePowerUsed./N); 

ChillerMetbyRenewable=RenewableEnergyUsed/ChillerEnergyUsed;                        %Metric 

 

%Electricity Cost 

% ElecCostStorage=sum((PowerUsed-RenewablePower).*ElectricRate)/N;                  %Energy charges only 

                                                                                    %With demand charges 

ElecCostStorage=(sum((PowerUsed-RenewablePower).*ElectricRate)/N)+max(PowerUsed)*(3.5*6+10.99*6)+... 

    max(PowerUsed(2:4466))*16.44+... 

    max(PowerUsed(4467:8498))*16.44+max(PowerUsed(8499:12962))*16.44+max(PowerUsed(12963:17282))*16.44+... 

    

max(PowerUsed(17283:21746))*16.44+max(PowerUsed(21747:26066))*39.64+max(PowerUsed(26067:30530))*39.64+... 

    

max(PowerUsed(30531:34994))*39.64+max(PowerUsed(34995:39314))*39.64+max(PowerUsed(39315:43778))*16.44+... 

    max(PowerUsed(43779:48098))*16.44+max(PowerUsed(48099:52561))*16.44; 

 

%Capital Cost 

%Chillers 

if strcmp('Air',ChillerType)==1 

    ChillerCost=2*((-0.0716*(Chiller_Rated/2)+258.53)*(Chiller_Rated/2)); %[$] from RS Means 2010 
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elseif strcmp('Water',ChillerType)==1 

    ChillerCost=2*(119.2*Chiller_Rated/2+28205)+2*(34.121*(1.16*Chiller_Rated/2)+3838.9); 

    %[$] from RS Means 2010 includes cooling tower 

    %1.16 Cooling tower factor is 1/Rated_COP to get from Qc to Qh 

end 

%Storage tanks 

if strcmp('CHW',StorageType)==1 

    TankCost=(Tank_Cap*20.68)*(1.5087*(Tank_Cap*20.68/10^6)^-0.366); 

    %Andrepoint Correspondence, 20.68 converts kWh to Mgal 

elseif strcmp('Ice',StorageType)==1 

    TankCost=Tank_Cap*140*0.2843; 

    %MacCracken correspondence, $140/ton-hr, 0.2843 converts kWh to ton-hr 

end 

%Renewable capacity 

if strcmp('Solar',Resource)==1 

    ResourceCost=2310000*RenewableFactor*FullLoadChillerPower; 

    %Renewable resource cost from SunShot report 2015 (commercial), includes $0.14/W for inverter 

replacement 

elseif strcmp('Wind',Resource)==1 

    ResourceCost=1710000*RenewableFactor*FullLoadChillerPower; 

    %from DOE Wind Technologies Market Report 2015, includes $0.14/W for inverter replacement 

end 

 

%Total Cost Calculation 

DiscountRate=0.08;                                %Discount rate used 

InflationRate=0.05;                               %Inflation rate used 

PresentWorthFactor=(1/(DiscountRate-InflationRate))*(1-((1+InflationRate)/(1+DiscountRate))^n); 

%from Duffie and Beckman Solar Engineering of Thermal Processes 

OperatingCostTotal=PresentWorthFactor*ElecCostStorage; 

TotalCost=(ChillerCost+TankCost+ResourceCost+OperatingCostTotal)/10^6;              %[$MM] 

end 
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function [ChillerCap] = ChillerCapacity(Temp,Tset,Chiller_Rated) 

%Returns full load capacity for an air cooled chiller with a set point of 

%Tset based on 2013 CA Building Energy 

%Efficiency Standards ACM as a function of ambient dry bulb 

MinTemp=65; %[F] 

%Minimum Tdb for a capacity advantage 

ChillerCap=Chiller_Rated.*(-0.09464899+0.03834070.*(Tset*9/5+32)+... 

    -0.00009205.*(Tset*9/5+32).^2+0.00378007*max(MinTemp,Temp*9/5+32)+... 

    -0.00001375.*max(MinTemp,Temp*9/5+32).^2+... 

    -0.00015464.*(Tset*9/5+32).*max(MinTemp,Temp*9/5+32));     %[kW] 

end 

 

function [ChillerCap] = ChillerCapacityWater(Twb,Tset,Chiller_Rated) 

%Returns full load capacity for water cooled chiller with a set point of 

%Tset based on 2013 CA Building Energy 

%Efficiency Standards as a function of entering condenser water temperature 

MinTemp=65; %[F] 

%Minimum Tecw for a capacity advantage 

%Minimum 

Temp=(Twb.*9./5+32)+7; %[F] 7 degree approach temperature used, Temp is Tecw 

%Twb is in [C] and needs to be converted to [F] 

ChillerCap=Chiller_Rated.*(-0.29861976+... 

    0.02996076.*(Tset*9/5+32)+... 

    -0.00080125.*(Tset*9/5+32).^2+... 

    0.01736268*max(MinTemp,Temp)-... 

    0.00032606.*max(MinTemp,Temp).^2+... 

    0.00063139.*(Tset*9/5+32).*max(MinTemp,Temp)); 

end 
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function [PLR_Int] = PLRIntermediate(RenewablePower,Temp,Tset,ChillerCap) 

%Returns air-cooled intermediate PLR value when renewable power isn’t sufficient to meet full-load power 

%Gives the intersection of the ChillerCap/Power ratio and the COP curves to get the intermediate PLR 

if RenewablePower>0 

    if (ChillerCap/RenewablePower)<(-0.1039*Temp+6.5573)   %Solution for part-load ratios above 0.5 

        PLR_Int_high=3.58357177E+01+4.82523637E-02*Tset+3.34311354E-03*Tset^2-8.48062324E-01*Temp+... 

            5.23087048E-03*Temp^2-1.01921108E+01*(ChillerCap/RenewablePower)+... 

            7.49241960E-01*(ChillerCap/RenewablePower)^2+1.01768078E-03*Tset*Temp-... 

            1.45202420E-02*Tset*(ChillerCap/RenewablePower)+1.13113410E-01*Temp*(ChillerCap/RenewablePower); 

        PLR_Int_low=0; 

    elseif (ChillerCap/RenewablePower)>-0.1702*Temp+11.906 %Solution for part-load ratios below 0.5 

        PLR_Int_low=1.86897425E+01+6.81135131E-02*Tset+1.52137313E-03*Tset^2-4.57107205E-01*Temp+... 

            2.92416151E-03*Temp^2-2.55813103E+00*(ChillerCap/RenewablePower)+... 

            8.89464142E-02*(ChillerCap/RenewablePower)^2-2.48210163E-04*Tset*Temp-... 

            6.62532446E-03*Tset*(ChillerCap/RenewablePower)+2.94548715E-02*Temp*(ChillerCap/RenewablePower); 

        PLR_Int_high=0; 

    else                                                   %Solution in between is 0.5 

        PLR_Int_high=0.5; 

        PLR_Int_low=0.5; 

    end 

else                                                       %If no renewable power, the PLR is zero 

    PLR_Int_high=0; 

    PLR_Int_low=0; 

end 

if PLR_Int_low>0.5                                         %Make sure solutions are on the correct PLR side 

    PLR_Int_low=0; 

end 

if PLR_Int_high<0.5 

    PLR_Int_high=0; 

end 

PLR_Int=max(PLR_Int_low,PLR_Int_high);                     %Use the maximum calculated PLR 

if PLR_Int>1                                               %limit solutions to physically possible range 

    PLR_Int=0; 

end 

if PLR_Int<0.075 

    PLR_Int=0; 

end 

end 
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function [PLR_Int] = PLRIntermediateWater(RenewablePower,Twb,Tset,ChillerCap) 

 %Returns intermediate PLR values 

%Solve for the intersection of the ChillerCap/Power ratio and the 

%COP curves to get the intermediate PLR 

%Solution is piecewise for different chiller set points, Tset 

MinTwb=14.44; %[C] lowest Tecw for water cooled chiller based on 7F approach temperature 

if Tset==4.44 

    if RenewablePower>0 

        %Solve for the intersection of the ChillerCap/Power ratio and the 

        %COP curves to get the intermediate PLR 

        a=-7.42449047E-01; b=1.56517946E+01; c=2.21856960E+01; d=-2.32515285E+01; e=2.15128994E-02; f=-

8.43395688E-05; 

        g=-1.51354274E-06; h=-4.00210936E-01; j=2.77731546E-03; k=-1.40854145E-01; m=1.89357829E-03; 

        vector_low=[d,... 

            c+k*max(Twb,MinTwb)+m*max(Twb,MinTwb)^2,... 

            -ChillerCap/RenewablePower+b+h*max(Twb,MinTwb)+j*max(Twb,MinTwb)^2,... 

            a+e*max(Twb,MinTwb)+f*max(Twb,MinTwb)^2+g*max(Twb,MinTwb)^3]; 

        PLR_Int_low=max(roots(vector_low));                %Solve for curve intersection for PLR<0.5 

        a=-2.57868782E+00; b=1.36523428E+01; c=1.65525811E+00; d=-4.36764334E+00; e=1.26505695E-01; f=-

1.22346019E-03; 

        g=-5.67475075E-07; h=-5.44510909E-01; j=4.99322469E-03; k=2.54456936E-01; m=-2.59114209E-03; 

        vector_high=[d,... 

            c+k*max(Twb,MinTwb)+m*max(Twb,MinTwb)^2,... 

            -ChillerCap/RenewablePower+b+h*max(Twb,MinTwb)+j*max(Twb,MinTwb)^2,... 

            a+e*max(Twb,MinTwb)+f*max(Twb,MinTwb)^2+g*max(Twb,MinTwb)^3]; 

        PLR_Int_high=max(roots(vector_high));               %Solve for curve intersection for PLR>=0.5 

    else 

        PLR_Int_low=0; 

        PLR_Int_high=0; 

    end 

    if PLR_Int_low>0.5 

        PLR_Int_low=0; 

    end 

    if imag(PLR_Int_low)~=0                                 %Check for imaginary solutions 

        PLR_Int_low=0; 

    end 

    if PLR_Int_high<=0.5 

        PLR_Int_high=0; 
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    end 

    if imag(PLR_Int_high)~=0 

        PLR_Int_high=0; 

    end 

    PLR_Int=max(PLR_Int_low,PLR_Int_high);                  %Use the maximum PLR 

    if PLR_Int>1                                            %Don't use an intersection that isn't physical 

        PLR_Int=1; 

    end 

    if ChillerCap/RenewablePower>Efficiency2ChillerWater(1,Twb,Tset) &&... 

            ChillerCap/RenewablePower<(2*Efficiency2ChillerWater(0.5,Twb,Tset)) &&... 

            PLR_Int<=0.00001                                %Throttle back to one chiller if solution is 

                                                            %above 0.5 PLR, but below two chillers 

        PLR_Int=0.5; 

    end 

elseif Tset==6.67 

    if RenewablePower>0 

        a=-7.93519489E-01; b=1.62977109E+01; c=2.42075800E+01; d=-2.50145136E+01; e=2.45371098E-02; f=-

1.69920825E-04; 

        g=-3.53194913E-07; h=-4.16124034E-01; j=2.79785692E-03; k=-1.63323236E-01; m=2.16486634E-03; 

        vector_low=[d,... 

            c+k*max(Twb,MinTwb)+m*max(Twb,MinTwb)^2,... 

            -ChillerCap/RenewablePower+b+h*max(Twb,MinTwb)+j*max(Twb,MinTwb)^2,... 

            a+e*max(Twb,MinTwb)+f*max(Twb,MinTwb)^2+g*max(Twb,MinTwb)^3]; 

        PLR_Int_low=max(roots(vector_low)); 

        a=-2.79814026E+00; b=1.44807368E+01; c=1.88273626E+00; d=-4.80504740E+00; e=1.40591452E-01; f=-

1.45940189E-03; 

        g=1.12542903E-06; h=-5.87148329E-01; j=5.37881648E-03; k=2.78718968E-01; m=-2.84217960E-03; 

        vector_high=[d,... 

            c+k*max(Twb,MinTwb)+m*max(Twb,MinTwb)^2,... 

            -ChillerCap/RenewablePower+b+h*max(Twb,MinTwb)+j*max(Twb,MinTwb)^2,... 

            a+e*max(Twb,MinTwb)+f*max(Twb,MinTwb)^2+g*max(Twb,MinTwb)^3]; 

        PLR_Int_high=max(roots(vector_high)); 

    else 

        PLR_Int_low=0; 

        PLR_Int_high=0; 

    end 

    if PLR_Int_low>0.5 

        PLR_Int_low=0; 

    end 
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    if imag(PLR_Int_low)~=0 

        PLR_Int_low=0; 

    end 

    if PLR_Int_high<=0.5 

        PLR_Int_high=0; 

    end 

    if imag(PLR_Int_high)~=0 

        PLR_Int_high=0; 

    end 

    PLR_Int=max(PLR_Int_low,PLR_Int_high); 

    if PLR_Int>1 

        PLR_Int=1; 

    end 

    if ChillerCap/RenewablePower>Efficiency2ChillerWater(1,Twb,Tset) &&... 

            ChillerCap/RenewablePower<(2*Efficiency2ChillerWater(0.5,Twb,Tset)) &&... 

            PLR_Int<=0.00001 

        PLR_Int=0.5; 

    end 

elseif Tset==-6.67 

    if RenewablePower>0 

        a=-5.54210667E-01; b=1.28848159E+01; c=1.51660734E+01; d=-1.68929963E+01; e=1.19178367E-02; f=1.43839497E-04; 

        g=-4.37196646E-06; h=-3.28559330E-01; j=2.51409588E-03; k=-6.91108362E-02; m=1.00295136E-03; 

        vector_low=[d,... 

            c+k*max(Twb,MinTwb)+m*max(Twb,MinTwb)^2,... 

            -ChillerCap/RenewablePower+b+h*max(Twb,MinTwb)+j*max(Twb,MinTwb)^2,... 

            a+e*max(Twb,MinTwb)+f*max(Twb,MinTwb)^2+g*max(Twb,MinTwb)^3]; 

        PLR_Int_low=max(roots(vector_low)); 

        a=-1.76382674E+00; b=1.04068352E+01; c=9.30878415E-01; d=-2.83553612E+00; e=7.74792815E-02; f=-5.17397776E-04; 

        g=-5.14081018E-06; h=-3.85075217E-01; j=3.63177421E-03; k=1.67168214E-01; m=-1.74892158E-03; 

        vector_high=[d,... 

            c+k*max(Twb,MinTwb)+m*max(Twb,MinTwb)^2,... 

            -ChillerCap/RenewablePower+b+h*max(Twb,MinTwb)+j*max(Twb,MinTwb)^2,... 

            a+e*max(Twb,MinTwb)+f*max(Twb,MinTwb)^2+g*max(Twb,MinTwb)^3]; 

        PLR_Int_high=max(roots(vector_high)); 

    else 

        PLR_Int_low=0; 

        PLR_Int_high=0; 

    end 

    if PLR_Int_low>0.5 

        PLR_Int_low=0; 
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    end 

    if imag(PLR_Int_low)~=0 

        PLR_Int_low=0; 

    end 

    if PLR_Int_high<=0.5 

        PLR_Int_high=0; 

    end 

    if imag(PLR_Int_high)~=0 

        PLR_Int_high=0; 

    end 

    PLR_Int=max(PLR_Int_low,PLR_Int_high); 

    if PLR_Int>1 

        PLR_Int=1; 

    end 

    if ChillerCap/RenewablePower>Efficiency2ChillerWater(1,Twb,Tset) &&... 

            ChillerCap/RenewablePower<(2*Efficiency2ChillerWater(0.5,Twb,Tset)) &&... 

            PLR_Int<=0.00001 

        PLR_Int=0.5; 

    end 

end 

end 
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function [CapRemaining] = ChillerCapacityRemaining(N,hour,ChillerCap) 

%Returns chiller capacity remaining for the remainder of a day (for the whole year) 

hour=round(hour); 

CapRemaining=zeros(1+8760*N,1);                             %Initialize the vector 

for j=2:(hour*N+1)                                          %Chiller cap remaining for the first day 

    CapRemaining(j)=sum(ChillerCap(j:hour*N+1))/N; 

end 

for k=2:365                                                 %for the rest of the year 

    for j=hour*N+2+(24*N*(k-2)):hour*N+1+(24*N*(k-1)) 

        CapRemaining(j)=sum(ChillerCap(j:hour*N+1+24*N*(k-1)))/N; 

    end 

end 

%capacity wraps around to the beginning of the year 

for j=2+8760*N-(24-hour)*N:1+8760*N 

    CapRemaining(j)=sum(ChillerCap(j:(8760*N+1)))/N+CapRemaining(2); 

end 

end 

 

function [LoadRemaining] = CoolingLoadRemaining(N,hour,CoolingLoad) 

%Returns cooling load remaining for the remainder of a day (for the whole year) 

hour=round(hour); 

LoadRemaining=zeros(1+8760*N,1);                            %initialize the vector 

for j=2:(hour*N+1)                                          %Load remaining for the first day 

    LoadRemaining(j)=sum(CoolingLoad(j:hour*N+1))/N; 

end 

for k=2:365                                                 %for the rest of the year 

    for j=hour*N+2+(24*N*(k-2)):hour*N+1+(24*N*(k-1)) 

        LoadRemaining(j)=sum(CoolingLoad(j:hour*N+1+24*N*(k-1)))/N; 

    end 

end 

%load wraps around to the beginning of the year 

for j=2+8760*N-(24-hour)*N:1+8760*N 

    LoadRemaining(j)=sum(CoolingLoad(j:(8760*N+1)))/N+LoadRemaining(2); 

end 

end 
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function [COP] = Efficiency2Chiller(PLR,Temp,Tset) 

%Returns COP for two parallel screw air-cooled chillers with a specified set point 

%Based on 2013 CA Building Energy 

%Efficiency Standards Alternative Calculation Method as a function of Tdb,PLR and Tset 

MinTemp=15.56; %[C] 

%Minimum Tdb for a performance advantage 

if PLR<=0.5                                                 %One chiller operation 

    a=2.36021747E-01; 

    b=1.35877978E+01; 

    c=-3.16493822E+00; 

    d=-2.20834773E-02; 

    e=1.22756001E-03; 

    f=-2.69765360E-02; 

    g=4.31575561E-04; 

    h=3.11886270E-02; 

    i=-1.72786099E-01; 

    j=7.59350700E-04; 

    COP=a+b.*PLR+c.*PLR.^2+d.*Tset+e.*Tset.^2+f.*max(Temp,MinTemp)+g.*max(Temp,MinTemp).^2+h.*PLR.*Tset+... 

        i.*PLR.*max(Temp,MinTemp)+j.*Tset.*max(Temp,MinTemp); 

else                                                        %Two chillers in parallel 

    a=5.76141843E-01; 

    b=6.47704975E+00; 

    c=-7.37168474E-01; 

    d=-2.94603441E-02; 

    e=1.69563586E-03; 

    f=-4.30449443E-02; 

    g=5.96137862E-04; 

    h=1.41613159E-02; 

    i=-7.84541920E-02; 

    j=1.04889559E-03; 

    COP=a+b.*PLR+c.*PLR.^2+d.*Tset+e.*Tset.^2+f.*max(Temp,MinTemp)+g.*max(Temp,MinTemp).^2+h.*PLR.*Tset+... 

        i.*PLR.*max(Temp,MinTemp)+j.*Tset.*max(Temp,MinTemp); 

end 

end 
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function [COP] = Efficiency2ChillerWater(PLR,Twb,Tset) 

%Returns COP for two optimized water cooled chillers with a variable set point 

%based on 2013 CA Building Energy 

%Efficiency Standards ACM as a function of ambient wet bulb, PLR, and Tset 

%Also accounts for cooling tower fan and pumping power 

MinTemp=4.44; %[C] minimum Twb 

if PLR<=0.5                                 %One chiller operation 

    if Twb>=14.44 

        a=-4.29666828E-01; 

        b=1.88108834E+01; 

        c=-1.08678764E+00; 

        d=2.57188808E-02; 

        e=-3.74748986E-03; 

        f=-1.92316518E-02; 

        g=7.73710465E-04; 

        h=2.54387190E-01; 

        i=-2.79691124E-01; 

        j=-1.62880334E-03;        

COP=a+b.*PLR+c.*PLR.^2+d.*Tset+e.*Tset.^2+f.*max(Twb,MinTemp)+g.*max(Twb,MinTemp).^2+h.*PLR.*Tset+... 

            i.*PLR.*max(Twb,MinTemp)+j.*Tset.*max(Twb,MinTemp); 

    elseif Twb<14.44 

        a=-1.09062674E-01; 

        b=6.92733733E+00; 

        c=3.41753030E-01; 

        d=-4.07600377E-02; 

        e=1.24429103E-03; 

        f=-8.65892215E-02; 

        g=2.79639598E-03; 

        h=2.70451143E-01; 

        i=5.70327738E-01; 

        j=2.93929115E-03; 

        

COP=a+b.*PLR+c.*PLR.^2+d.*Tset+e.*Tset.^2+f.*max(Twb,MinTemp)+g.*max(Twb,MinTemp).^2+h.*PLR.*Tset+... 

            i.*PLR.*max(Twb,MinTemp)+j.*Tset.*max(Twb,MinTemp); 

    end 

elseif PLR>0.5 

   if Twb>=14.44 

        a=-1.10955651E+00; 

        b=1.24875522E+01; 
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        c=-3.56681278E+00; 

        d=6.23535681E-02; 

        e=-1.50369890E-03; 

        f=-5.28947498E-02; 

        g=9.76716377E-04; 

        h=8.44533720E-02; 

        i=-9.74080099E-02; 

        j=-2.02315661E-03; 

        

COP=a+b.*PLR+c.*PLR.^2+d.*Tset+e.*Tset.^2+f.*max(Twb,MinTemp)+g.*max(Twb,MinTemp).^2+h.*PLR.*Tset+... 

            i.*PLR.*max(Twb,MinTemp)+j.*Tset.*max(Twb,MinTemp); 

   elseif Twb<14.44 

        a=-1.59628492E+00; 

        b=7.31774789E+00; 

        c=-2.28084584E+00; 

        d=-3.85480843E-02; 

        e=1.76810916E-03; 

        f=-2.10927976E-02; 

        g=2.05195556E-03; 

        h=1.19134097E-01; 

        i=1.91646782E-01; 

        j=3.74421585E-03; 

        

COP=a+b.*PLR+c.*PLR.^2+d.*Tset+e.*Tset.^2+f.*max(Twb,MinTemp)+g.*max(Twb,MinTemp).^2+h.*PLR.*Tset+... 

            i.*PLR.*max(Twb,MinTemp)+j.*Tset.*max(Twb,MinTemp); 

   end 

end 
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function [UA,Qice,Tout] = IceModel(Fc,Tin,Mode,Tank_Cap,mice) 

%function [Qice] = IceModel(Fc,Tin,Mode,Tank_Cap) 

%EnergyPlus "Simple" Ice Storage Model 

%Fc: Fraction of tank charged 

%Tin: ice tank inlet temperature 

%Mode: 1: Charging 2: Discharging 

%Tank_Cap: Ice tank capacity [kWh] 

 

Tank_Cap_kJ=Tank_Cap*3600;               %Convert units from kWh to kJ 

delta_t=3600;                            %[s] to get UA into instantaneous units 

delta_T_nom=10;                          %[C] assumed temperature difference in model 

Tfr=0;                                   %[C] freezing point of water 

%mice=3.9;                               %rated 3.9 kg/s for each 570 kWh tank at 60 GPM 

c_gly=3.76;                              %[kJ/kg-K] for 25% ethylene glycol mixture 

Ice_Cap=570*3600;                        %[kJ] 162 ton-hrs per tank 

 

if Mode==1                               %Charging 

    UAIceCh=(1.3879-7.6333*(Fc)+26.3423*(Fc)^2-47.6084*(Fc)^3+41.8498*(Fc)^4-14.2948*(Fc)^5)*... 

        Ice_Cap/(delta_t*delta_T_nom); 

    Tout=Tin*exp(-UAIceCh/((mice*Ice_Cap/Tank_Cap)*c_gly)); %Energy balance on the tank 

    LMTD=(Tout-Tin)/log((Tfr-Tin)/(Tfr-Tout)); 

    Qice=UAIceCh*LMTD;                   %[kW] 

    UA=UAIceCh; 

elseif Mode==2                               %Discharging 

    UAIceDisCh=(1.3879-7.6333*(1-Fc)+26.3423*(1-Fc)^2-47.6084*(1-Fc)^3+41.8498*(1-Fc)^4-14.2948*(1-Fc)^5)*... 

        Ice_Cap/(delta_t*delta_T_nom); 

    Tout=Tin*exp(-UAIceDisCh/((mice*Ice_Cap/Tank_Cap)*c_gly));%Energy balance on the tank 

    LMTD=(Tin-Tout)/log((Tin-Tfr)/(Tout-Tfr)); 

    Qice=UAIceDisCh*LMTD;                %[kW] 

    UA=UAIceDisCh; 

end 

end 
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% CTES Model Predictive Control Strategy 

clear all; close all; clc; 

 

% System inputs 

N=144;                                                  % Number of 10-minute timesteps optimized 

ChillerRated=3830;                                      % Rated chiller capacity [kWt] 

CapStorage=23000;                                       % Thermal storage capacity [kWh] 

 

%Load cooling load and Twb variables 

V1='CoolingLoadOfficeNY20167AM';                        % 2016 NY cooling load 

CoolingLoad=load('CoolingLoadOfficeNY20167AM.mat',V1); 

CoolingLoad=CoolingLoad.(V1); 

CoolingLoad=CoolingLoad(2:52561); 

V2='WBTempNY20167AM';                                   % 2016 NY wet-bulb temperature 

Twb=load('WBTempNY20167AM.mat',V2); 

Twb=Twb.(V2); 

Twb=Twb(2:52561); 

V3='ElectricRateNYISORT7AM';                            % 2016 NYISO electricity rates 

Rate_e=load('ElectricRateNYISORT7AM.mat',V3); 

Rate_e=Rate_e.(V3); 

Rate_e=Rate_e(2:52561); 

ChillerPower=zeros(52560,1);                            % Initialize chiller power vector 

Results=zeros(52560,2);                                 % Initialize vector of results 

Timestep=1/6;                                           % Ten-minute timesteps (one-sixth of an hour) 

 

for i=1:365                                             % Step through 365 days of the year 

FirstTimestep=(i-1)*144+1;                              % First timestep at the beginning of each day 

 

% Objective function 

Coeff(1:N)=Timestep.*ChillerRated.*Rate_e(FirstTimestep:(FirstTimestep+N-1)).*0.1176; 

f=zeros(2*N,1);                                         % Objective function has 2*timesteps elements 

f(1:N)=Coeff;                                           % All of the PLR values 

 

% Pre-calculations 

CapCh=ChillerCapacityWater(Twb,1.11,ChillerRated);      % Uses chiller capacity function 

 

% Bounded constraints 

lb=-Inf(size(f));                                       % Initialize lower bound 

lb(1:N)=0;                                              % PLR lower bound 
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lb(N+1:2*N)=0;                                          % Tank charge lower bound 

ub=Inf(size(f));                                        % Initialize upper bound 

ub(1:N)=1;                                              % PLR upper bound 

ub(N+1:2*N)=CapStorage*1.0;                             % Tank charge upper bound 

 

% Equality constraints 

Aeq=zeros(N+1,2*N);                                     % Initialize equality matrix 

beq=zeros(N+1,1);                                       % Initialize equality vector 

 

% Tank recharged by the end of the time period 

beq(1,1)=sum(CoolingLoad(FirstTimestep:(FirstTimestep+N-1))); 

for j=1:N 

    Aeq(1,j)=CapCh(FirstTimestep+j-1); 

end 

 

% Tank charge within physical capacity 

% For first timestep 

beq(2,1)=CoolingLoad(FirstTimestep)*Timestep-CapStorage; 

Aeq(2,1)=CapCh(FirstTimestep)*Timestep; 

Aeq(2,N+1)=-1; 

for j=1:(N-1)                                           % Subsequent timesteps 

    beq(j+2,1)=CoolingLoad(FirstTimestep+j)*Timestep;   % Cooling load 

    Aeq(j+2,j+1)=CapCh(FirstTimestep+j)*Timestep;       % Added by chiller 

    Aeq(j+2,N+j)=1;                                     % Previous tank charge 

    Aeq(j+2,N+j+1)=-1;                                  % Current tank charge 

end 

 

% Solve 

% Options to use the dual-simplex algorithm and suppress display each day 

options = optimoptions('linprog','Algorithm','dual-simplex','Display','none'); 

 

% No inequality constraints 

[x,fval,exitflag,output] = linprog(f,[],[],Aeq,beq,lb,ub,options); 

 

% Post-processing - concatenate PLR and TankCharge values 

PLR(FirstTimestep:(FirstTimestep+143),1)=x(1:144); 

TankCharge(FirstTimestep:(FirstTimestep+143),1)=x(145:288); 

end 
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for j=1:52560 

    if PLR(j)>0.01 

        % Calculate chiller power using linearized performance curves 

        ChillerPower(j)=(0.01258+0.1176.*PLR(j)+0.0005105.*Twb(j)).*ChillerRated; 

    end 

end 

 

TimestepCost=ChillerPower.*Rate_e;                      % Cost for each timestep 

EnergyCost=sum(TimestepCost)*Timestep;                  % Total energy cost 

EnergyUsed=sum(ChillerPower)*Timestep;                  % Total energy consumed 

AvgPowerUsed=mean(ChillerPower);                        % Average power consumed 

 


