The Flow of Thin Liquid Film Past Obstructions

Jason Chan October 26, 2021 SEL Seminar

What's going on?

Common applications of obstructions in thin liquid films

Why build a separate facility?

Real-life analogy: flow around bridge pylon/pillar

Obstructions

- Material: FormLabs Gray Pro resin
- Parametric Study
 - Sizes: 5, 10, 15 mm (1.25%, 2.5%, 3.75% of channel width)
 - Incline angle: 30, 45, 60 degrees
 - ⁻ Flow Rates: 20, 40, 60 g/s
 - Geometry shapes

Obstructions - Time averaged images

Circle	Triangle	Square	Hexagon					

- Material: FormLabs Gray Pro resin
- ⁻ Sizes: 5, 10, 15 mm (1.25%, 2.5%, 3.75% of channel width)
- ⁻ Shown: 60 g/s, 30 deg incline angle, 15 mm obstructions

Obstructions – Takeaways

- No dry patch
- No obvious change in downstream film thickness
- ⁻ A wake profile exists
- Next steps:
 - Increase obstruction size
 - Measure wake profile film thickness

Plate Obstructions

th: 3 mm

Width: 20 to 105 mm @ 5 mm increments

- Material: Acrylic
- Parametric Study
 - Widths: 25 105 mm @ 5 mm increments
 - ⁻ Incline angle: 30, 45, 60 degrees
 - ⁻ Flow Rates: 20, 40, 60 g/s

Plate Obstructions – Two regimes

Obstruction

Experimental procedure

Stop flow Install obstruction **Restart flow** Downstream film ruptures Spray water on dry patch immediately downstream of the obstruction Record whether the dry patch recovers (rewets)

Plate Obstructions – Two regimes

Experimental procedure

Stop flow Install obstruction **Restart flow** Downstream film ruptures Spray water on dry patch immediately downstream of the obstruction Record whether the dry patch recovers (rewets)

Does not recover

Plate Obstructions – Regime map V1

Incline	Flow Rate [g/s]	Plate Width [mm]																	
Angle		20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105
60 deg	60																		
	40																		
	30*																		
45 deg	60																		
	40																		
	20																		
30 deg	60																		
	40																		
	20																		
Quasi-stable between wet and dry																			
Tends to be dry																			
*: Wetting issues at 20 g/s																			

60 deg Plate Obstruction Plate Width (20mm – 90mm)

Plate Obstructions – Wet/Dry boundary

$$x = -\frac{r}{3} \left(\frac{1 - 3\cos^2(\psi)}{\sin^3(\psi)} - 1 \right), \quad y = r \frac{\cos(\psi)}{\sin^2(\psi)}$$
$$r = m f_2(\theta_s) \frac{L_c^2}{\sin(\alpha)} \frac{U_c}{\Gamma}, m = 0.23$$
$$f_2(\theta_s) = \frac{(1 - \cos(\theta_s))^4}{\theta_s - \sin(\theta_s)\cos(\theta_s)}$$

 $\theta_s \approx 21^\circ$

Boundary location is a function of :

- θ_s , **contact angle** between water and incline pane
- $L_c = \sqrt{\left(\frac{\sigma}{\rho g}\right)}$, capillary length (surface tension, density)
- $U_c = \frac{\sigma}{u}$, capillary velocity (surface tension, **viscosity**)
- *α*, **incline angle** wrt horizontal
- Γ , flow rate per unit film width (~0.1E-3 m²/s)

What now...?

- Redo regime map with cleaner water and more diligent glass cleaning (algae growth and small smudges)
- Test more acrylic obstructions of different shapes
- Formulate a non-dimensional number to help predict which regime a configuration belongs to
- Test in the annular flow facility with refrigerant (very low contact angle with glass <1°)

