

Nathan Colgan

PhD Student - Nuclear Engineering Advisor: Mark Anderson Room: 1337ERB <u>ncolgan@wisc.edu</u> Hometown: Philadelphia, PA

Thesis: Forced-convection waste heat rejection for Mars surface applications

Background and Motivation

- Crewed Mars missions will require >40kWe, nuclear fission power systems, such as NASA's Kilopower, are ideal for this application due to their high power density
- Current designs use a radiator for waste heat rejection, however the radiator contributes significantly to the overall system mass and size and requires high rejection temperatures, increasing mission cost and reducing scientific payload capacity and power cycle thermal efficiency
- A forced-convection heat exchanger transferring waste heat to the Martian atmosphere may significantly reduce overall system mass
 - Higher heat transfer coefficient
 - More compact design as surface area does not require sky exposure, reducing deployment complexity
 - Weaker rejection temperature dependence
 - Scalable to lower-power and lower-temperature applications such as cryofuel refrigeration, ISRU plant cooling, habitat thermal regulation
- Challenges:
 - Martian atmospheric conditions (~600 Pa, 220K, 95% CO₂) drastically reduce heat transfer coefficient and fan performance
 - Very little data exists on heat exchanger performance at low Reynolds, high Knudsen number, or on high head coefficient fan performance at low Reynolds, high Mach number

Illustration of heat exchangers optimized for various heat rejection loads. Background image credit: NASA

Modelling

- Modelled cross-flow heat exchanger using effectiveness-NTU method and existing Nu ٠ and Eu correlations for low-Reynolds number tube banks
- Optimized HX design to minimize mass, including mass penalty for required fan power
- Integrated model with existing fission power ٠ cycle model to minimize overall system mas
- Use of HX instead of radiator reduces predicted system mass by 80%, frontal area by 94%, minimum cycle temperature by 42
- Optimal HXs have no fins, very small tubes, ٠ few rows to minimize required fan pressure rise
- Aluminum HX lightest across range of cycle ٠ output power
- HX optimized for average Mars conditions can operate across typical annual range of ٠ atmospheric conditions by increasing fan power 10/12/2021

	Performance Parameter	Radiator	Air cooling I	łΧ	Optimal HX	Geometry	Value	
er r	Mass Flow Rate [kg/s]	1 14	0	664	Atmospheric P	ressure [kPa]	0.6	
	Heat Rejection Temperature [K]	404	3	61.8	Heat Loa	ıd [kW]	71.0	
	Minimum Ovelo Tomporaturo [K]	404	329		Inlet Temp, [K]		394	
	Maximum Cycle Temperature [K]	414	000		Outlet Temp, [K]		324	
		900		900	Length, [mm]		1485	
		0.27	0.361		Tubes/row		3100	
	Recuperator Mass [kg]	111	29.8		Tube Diam [mm]		0.569	
	Heat Rejection Mass [kg]	570	26.8		Height, [mm]		3528	
	Reactor Mass [kg]	101	102.5		Depth, [mm]		2.3	
	Combined Mass [kg]	782		159	Tube rows		2	
	Area, [m²]	84	5.29 (frontal area)		Fan Power, [W]		1039	
		-			Air-side Pressu	ire Loss, [Pa]	11.95	
ss a !K	8000 P=500 Pa P=600 Pa P=700 Pa P=800 Pa P=900 Pa P=900 Pa	•	45 40 40 30 30 40 45 40 45 40 45 40 45 40 45 40 45 40 45 40 45 40 40 40 40 40 40 40 40 40 40 40 40 40		Stainless Steel Aluminum Copper nconel Titanium			
	220 240 Ambient Tempe	260 prature [K]	280	40	60 Desirer	80 Power [k]	100	120

Ambient Temperature, [K]

Experimental Validation

- Constructing low-pressure test facility to operate prototype HXs in Mars-like environment
- Will collect HX pressure loss and conductance data for range of fan speeds, heat loads, and ambient pressures for various HX designs
- Tests will be carried out in a vacuum glovebox filled with low-pressure CO₂
- Experimental HX is 1.75"x1.75", consists of 2 rows of 43 0.02" diameter tubes, will be heated via electrical resistance

