

CRYOGENIC ENGINEERING LAB

Sydney Therien

Master of Science Mechanical Engineering

Office: 1329 ERB Email: therien@wisc.edu Hometown: St. Paul, MN

Project: Vanadium Superconducting Heat Switch Advisor(s): Franklin Miller, Greg Nellis Sponsor: NASA

- Advanced astrophysics mission instruments require cooling to <1K
 - Modern tech for this is the CADR: Continuous Adiabatic Demagnetization Refrigerator
 - The CADR needs a <u>superconducting heat switch</u> to operate
 - Higher switching ratio \rightarrow more efficient cycle
 - Improving the heat switch will increase the volume and quality of space data collected by future missions
- Current superconducting heat switches use lead as the switching element
 - Primarily because it is easy to source in high purities
 - Switching ratio x $T_{operating}^2 = 900$
 - Workable, but not ideal
- Using vanadium as the switching element could significantly improve the first (of four) CADR cycle stage
 - Switching ratio x $T_{operating}^2 = 15300$
 - 17x more efficient
 - Potential to increase cooling power by 39%
 - Potential to reduce physical size by ~30%

Figure 1: Superconducting heat switch

- 1. Make high-purity vanadium foils
 - Test out purification procedure from AMES lab
 - Construct the required electrotransport purification apparatus
 - Build thermal conductivity test holder (Figure 2)
 - Compare performance of unpurified and purified vanadium
- 2. Design superconducting magnet that will actuate the vanadium foils
 - Create a holder for the foils
 - Characterize the thermal conductivity of the foils while in the holder
- 3. Develop preliminary designs for a vanadium-based heat switch

Figure 2: Proposed design of a thermal conductivity test holder. This will compare thermal conductivity of vanadium to other candidate switching materials.