Bales, C.; Persson, T.
March 2003
Solar Energy, vol 74-3, p. 193-204
This article compares seven different external DHW units, comprising flat plate heat exchanger and flow control, with a reference method for preparing hot water. These DHW units use different control methods. The objective of the study was to determine which methods are most effective in solar combisystems and to identify other factors that strongly influence the energy savings of the system. Five of the DHW units were judged to be of interest for the study because of their measured performance or the simplicity of their design. Of these, measurement data showed that two had the same control function although of different physical construction. Thus four DHW units were modelled in the simulation environment PRESIM/ TRNSYS, parameters were identified from measured data, and annual simulations were performed with a number of parametric variations. Three of the DHW units performed significantly better than the reference system provided that they were sized correctly: microprocessor control with variable-speed pump; proportional controller with regulating valve; and a turbine pump. The most important design factors identified by the study were: the maximum possible primary flow, which needs to be suitable for the design hot water load profile; and ensuring a low temperature is returned to the store. The hot water load profile was also shown to strongly influence the energy savings, assuming that auxiliary heater's thermostat is set so that the system just meets the worst-case discharge.
Source: www.engineeringvillage2.org